Skip to content

Task

Exploring Flower Documentation

As a researcher interested in Federated Learning, I explore the Flower documentation, so that I can quickly get started with implementing Flower in my projects.

Success definition: Given I am on the Flower documentation landing page When I click on the 'Flower Framework' link Then I should be taken to the Flower Framework documentation page that includes tutorials and guides for implementation, and when I click on the 'Get started with Flower' link, I should see the introductory tutorial for implementing Flower with PyTorch.

Trajectory

Step 1:

Url (before/after):

https://flower.ai/

https://flower.ai/docs/

Content (before/after):

RootWebArea Flower: A Friendly Federated AI Framework, focused, url='https://flower.ai/'
    [58] link Flower Flower, center=(399,44), inner_text=Flower, url='https://flower.ai/'
        image Flower, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Flogo_with_text.a0ff4459.png&w=128&q=75'
    navigation
        [69] link Documentation, center=(540,44), url='https://flower.ai/docs/'
Show more
        [70] link Blog, center=(645,44), url='https://flower.ai/blog/'
        [72] button Events, center=(732,44), expanded=False, type=button
        [75] link Discuss, center=(832,44), url='https://discuss.flower.ai/'
    [79] link Star 5.3k, center=(1153,44), url='https://github.com/adap/flower'
    [82] link Slack Join Slack, center=(1297,44), inner_text=Join Slack, url='https://flower.ai/join-slack/'
        image Slack
    StaticText Register or Log In
    main
        [102] link What's new? FlowerTune LLM Leaderboard, center=(545,168), inner_text=What's new?
FlowerTune LLM Leaderboard, url='https://flower.ai/benchmarks/llm-leaderboard/'
        heading Flower A Friendly Federated AI Framework
        heading A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language.
        [113] link Take the tutorial, center=(479,536), url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
        paragraph
            StaticText to learn federated learning
        [117] link, center=(1288,377), url='https://flower.ai/benchmarks/llm-leaderboard/'
            image
        paragraph
            StaticText Climb to the top of the
            strong
                StaticText FlowerTune LLM Leaderboard!
        paragraph
            StaticText The next Flower Monthly is scheduled for 5th Feb 16:00 UTC (08:00 SF, 11:00 NY, 16:00 LON, 17:00 CET, 21:30 IST, 00:00 北京)
        [133] link Join us, center=(1514,750), url='https://flower.ai/events/flower-monthly/'
        heading Users love Flower
        image Afra Mashhadi, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fafra_mashhadi.51d202c8.png&w=640&q=75'
        StaticText “My Students are free to choose their FL Framework, but Flower has proven itself because it’s
        StaticText difficult to get wrong!
        StaticText ”
        paragraph
            StaticText Afra Mashhadi
        paragraph
            StaticText Assistant Professor at the University of Washington
        image Aashish Kolluri, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Faashish_kolluri.6b040c0d.png&w=640&q=75'
        StaticText “
        StaticText The communications between server and clients
        StaticText have been very smooth even when they were on different machines.”
        paragraph
            StaticText Aashish Kolluri
        paragraph
            StaticText PhD Student at National University of Singapore
        image James Faure, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fjames_faure.6a294a08.png&w=640&q=75'
        StaticText “FL has always been a concept that has been daunting to me. It only took me 3 hours to understand it with Flower,
        StaticText using the great documentation and tutorials.
        StaticText ”
        paragraph
            StaticText James Faure
        paragraph
            StaticText Student Researcher at Stellenbosch University
        image M S Chaitanya Kumar, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fchaitanya_kumar.30be6725.png&w=640&q=75'
        StaticText “
        StaticText Flower framework was easy to understand compared to other frameworks which I have gone through;
        StaticText allocating GPU's for efficient usage is really good.”
        paragraph
            StaticText M S Chaitanya Kumar
        paragraph
            StaticText Integrated M.Tech Student at University of Hyderabad
        image William Lindskog, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fwilliam_lindskog.e9d8c2ec.png&w=640&q=75'
        StaticText “The simulation engine is great and
        StaticText lets me run complete federated systems on my computer. It all runs very smooth and quick.
        StaticText ”
        paragraph
            StaticText William Lindskog
        paragraph
            StaticText PhD Candidate at DENSO & TU Munich
        link ❤️ Show more users' feedback →, url='https://flower.ai/testimonials/'
        paragraph
            StaticText SOME OF THE BEST ORGANIZATIONS IN THE WORLD USE FLOWER
        image University of Cambridge logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fcambridge_gray.33e3e163.png&w=256&q=75'
        image Harvard University logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fharvard_gray.feac1cda.png&w=256&q=75'
        image Orange logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Forange_gray.61760f67.png&w=256&q=75'
        image Massachusetts Institute of Technology logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fmit_gray.5503036f.png&w=256&q=75'
        image Samsung AI logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fsamsung_gray.2c4a34b2.png&w=256&q=75'
        image Technical University of Munich logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Ftum_gray2.47caf6a0.png&w=256&q=75'
        image Siemens Healthineers logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fsiemens_gray.ff12234d.png&w=256&q=75'
        image University of Oxford logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Foxford_gray2.803bc9c1.png&w=256&q=75'
        image Accenture logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Faccenture_gray.5b8984c5.png&w=256&q=75'
        image Gachon University logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fgachon_gray.b993e2c3.png&w=256&q=75'
        image Banking Circle logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fbakingcircle_gray.fb6f562e.png&w=256&q=75'
        image National Health Service logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fnhs_gray.365320c9.png&w=256&q=75'
        heading Get Started
        paragraph
            StaticText Build your first federated learning project in two steps. Use Flower with your favorite machine learning framework to easily federated existing projects.
        link PyTorch, url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
        link TensorFlow, url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
        link HuggingFace, url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
        link JAX, url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
        link Pandas, url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
        link fastai, url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
        link PyTorch-Lightning, url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
        link MXNet, url='https://flower.ai/docs/framework/tutorial-quickstart-mxnet.html'
        link scikitlearn, url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
        link XGBoost, url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
        navigation Tabs
            StaticText TensorFlow
            StaticText PyTorch
            StaticText HuggingFace
            StaticText NumPy
        heading 0. Install Flower
        button Copy
        code
            StaticText pip install flwr[simulation]
        heading 1. Create Flower app
        button Copy
        code
            StaticText flwr new
            StaticText # Select TensorFlow & follow instructions
        heading 2. Run Flower app
        button Copy
        code
            StaticText flwr run .
        image Flower in Industry title, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Findex_flower_in_action.265aef98.png&w=1080&q=75'
        paragraph
        link Federated Learning in Automotive Automotive, url='https://flower.ai/industries/automotive/'
            image Federated Learning in Automotive, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Findex_auto.9d30d020.png&w=1080&q=75'
            paragraph
        link Federated Learning in Finance Finance, url='https://flower.ai/industries/finance/'
            image Federated Learning in Finance, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Findex_finance.ecd97217.png&w=1080&q=75'
            paragraph
        paragraph
            StaticText Federated Learning Tutorials
        paragraph
            StaticText This series of tutorials introduces the fundamentals of Federated Learning and how to implement it with Flower.
        heading 00
        image What is Federated Learning?, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2F00_fl.0d4def05.png&w=256&q=75'
        paragraph
            StaticText What is Federated Learning?
        list
            listitem
                StaticText Classic Machine Learning
            listitem
                StaticText Challenges of Classical Machine Learning
            listitem
                StaticText Federated Learning
            listitem
                StaticText Federated Evaluation
            listitem
                StaticText Federated Analytics
            listitem
                StaticText Differential Privacy
        link Start now, url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
        heading 01
        image Get started with Flower, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2F01_fl.ec1695e2.png&w=256&q=75'
        paragraph
            StaticText Get started with Flower
        list
            listitem
                StaticText Preparation
            listitem
                StaticText Step 01: Centralized Training with PyTorch
            listitem
                StaticText Step 02: Federated Learning with Flower
        link Start now, url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html'
        heading 02
        image Use a federated learning strategy, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2F02_fl.8bfd4764.png&w=256&q=75'
        paragraph
            StaticText Use a federated learning strategy
        list
            listitem
                StaticText Preparation
            listitem
                StaticText Strategy customization
            listitem
                StaticText Server-side parameter evaluation
            listitem
                StaticText Sending/receiving arbitrary values to/from clients
            listitem
                StaticText Scaling Federated Learning
        link Start now, url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
        heading Check out the rest of the tutorials:
        list
            listitem
                link 03 Build a strategy from scratch, url='https://flower.ai/docs/framework/tutorial-series-build-a-strategy-from-scratch-pytorch.html'
            listitem
                link 04 Customize the client, url='https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html'
        image Code editor with Flower code, url=''
        heading Getting Started
        heading Installation Guide
        paragraph
            StaticText The Flower documentation has detailed instructions on what you need to install Flower and how you install it. Spoiler alert: you only need pip! Check out our installation guide.
        link, url='https://flower.ai/docs/framework/how-to-install-flower.html'
        heading PyTorch, TensorFlow, 🤗, ...?
        paragraph
            StaticText Do you use PyTorch, TensorFlow, MLX, scikit-learn, or Hugging Face? Then simply follow our quickstart examples that help you to federate your existing ML projects.
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-mlx.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
        link, url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
        heading _Why Flower?
        heading A unified approach to federated learning, analytics, and evaluation.
        heading Scalability
        paragraph
            StaticText Flower was built to enable real-world systems with a large number of clients. Researchers used Flower to run workloads with tens of millions of clients.
        heading ML Framework Agnostic
        paragraph
            StaticText Flower is compatible with most existing and future machine learning frameworks. You love Keras? Great. You prefer PyTorch? Awesome. Raw NumPy, no automatic differentiation? You rock!
        heading Cloud, Mobile, Edge & Beyond
        paragraph
            StaticText Flower enables research on all kinds of servers and devices, including mobile. AWS, GCP, Azure, Android, iOS, Raspberry Pi, and Nvidia Jetson are all compatible with Flower.
        heading Research to Production
        paragraph
            StaticText Flower enables ideas to start as research projects and then gradually move towards production deployment with low engineering effort and proven infrastructure.
        heading Platform Independent
        paragraph
            StaticText Flower is interoperable with different operating systems and hardware platforms to work well in heterogeneous edge device environments.
        heading Usability
        paragraph
            StaticText It's easy to get started. 20 lines of Python is enough to build a full federated learning system. Check the code examples to get started with your favorite framework.
        heading Join the Community!
        paragraph
            StaticText Join us on our journey to make federated approaches available to everyone.
        link Join Flower Discuss, url='https://discuss.flower.ai/'
        link Slack Join Slack, url='https://flower.ai/join-slack'
            image Slack
        image Flower Logo, url=''
        [538] link Star on GitHub ⭐️, center=(960,1024), url='https://github.com/adap/flower'
            button Star on GitHub ⭐️
    [89] span, center=(1486,44), inner_text=Register or Log In
    contentinfo Footer
        heading Footer
        image Flower Logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Flogo_secondary-w-border.411ce221.png&w=64&q=75'
        paragraph
            StaticText Flower: The Friendly
            StaticText Federated Learning Framework.
        link Slack, url='https://flower.ai/join-slack/'
        link LinkedIn, url='https://de.linkedin.com/company/flwrlabs'
        link Twitter, url='https://twitter.com/flwrlabs'
        link GitHub, url='https://github.com/adap/flower'
        link YouTube, url='https://www.youtube.com/@flowerlabs'
        heading Documentation
        list
            listitem
                link Flower Framework, url='https://flower.ai/docs/framework/'
            listitem
                link Flower Baselines, url='https://flower.ai/docs/baselines/'
            listitem
                link Flower Android SDK, url='https://flower.ai/docs/android/'
            listitem
                link Flower iOS SDK, url='https://flower.ai/docs/ios/documentation/flwr/'
            listitem
                link Flower C++ SDK, url='https://github.com/adap/flower/tree/main/examples/quickstart-cpp'
            listitem
                link Example Projects, url='https://flower.ai/docs/examples/'
        heading Events
        list
            listitem
                link All Events, url='https://flower.ai/events/'
            listitem
                link Flower Monthly, url='https://flower.ai/events/flower-monthly/'
            listitem
                link Flower AI Summit 2025, url='https://flower.ai/events/flower-ai-summit-2025/'
            listitem
                link Flower AI Summit 2024, url='https://flower.ai/events/flower-ai-summit-2024/'
            listitem
                link Flower Summit 2023, url='https://flower.ai/events/flower-summit-2023/'
            listitem
                link Flower Summit 2022, url='https://flower.ai/events/flower-summit-2022/'
            listitem
                link Flower Summit 2021, url='https://flower.ai/events/flower-summit-2021/'
        heading Other
        list
            listitem
                link Blog, url='https://flower.ai/blog/'
            listitem
                link Discuss, url='https://discuss.flower.ai/'
            listitem
                link Careers, url='https://flower.ai/careers'
            listitem
                link Pilot Program, url='https://flower.ai/pilot'
            listitem
                link FlowerTune, url='https://flower.ai/benchmarks/llm-leaderboard/'
            listitem
                link Glossary, url='https://flower.ai/glossary'
            listitem
                link Flower Visuals, url='https://flower.ai/visuals'
            listitem
                link Event Calendar, url='https://calendar.google.com/calendar/u/0?cid=Y18zOWI5ODZiZDhjMmI5MTEzZDE0NmRmZTdjMmQyM2M0MjI5N2Y2ZmVlN2FjYTk5ZGY5MWUzZGJmZTcwMzc4N2I2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20'
        heading Socials
        list
            listitem
                link Slack, url='https://flower.ai/join-slack/'
            listitem
                link LinkedIn, url='https://de.linkedin.com/company/flwrlabs'
            listitem
                link Twitter / X, url='https://twitter.com/flwrlabs'
            listitem
                link GitHub, url='https://github.com/adap/flower'
            listitem
                link YouTube, url='https://www.youtube.com/@flowerlabs'
            listitem
                link bilibili, url='https://space.bilibili.com/3546373735582167'
        heading Legal
        list
            listitem
                link Imprint, url='https://flower.ai/imprint/'
            listitem
                link Privacy, url='https://flower.ai/privacy/'
        paragraph
            StaticText © 2024 Flower Labs GmbH. All rights reserved.
    alert, atomic
RootWebArea Flower Documentation, focused, url='https://flower.ai/docs/'
    [678] link Flower Flower, center=(399,44), inner_text=Flower, url='https://flower.ai/'
        image Flower, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Flogo_with_text.a0ff4459.png&w=128&q=75'
    navigation
        [689] link Documentation, center=(540,44), url='https://flower.ai/docs/'
Show more
        [690] link Blog, center=(645,44), url='https://flower.ai/blog/'
        [692] button Events, center=(732,44), expanded=False, type=button
        [695] link Discuss, center=(832,44), url='https://discuss.flower.ai/'
    [699] link Star 5.3k, center=(1153,44), url='https://github.com/adap/flower'
    [702] link Slack Join Slack, center=(1297,44), inner_text=Join Slack, url='https://flower.ai/join-slack/'
        image Slack
    StaticText Register or Log In
    main
        heading Documentation
        paragraph
            StaticText Docs for all Flower projects
        [722] link Flower Framework Build, simulate, and deploy federated learning at scale with the core Flower Framework. Easily federate existing machine learning projects with the Flower Python SDK., center=(648,461), inner_text=Flower Framework

Build, simulate, and deploy federated learning at scale with the core Flower Framework. Easily federate existing machine learning projects with the Flower Python SDK., url='https://flower.ai/docs/framework/'
            heading Flower Framework
            paragraph
        [727] link Flower Datasets Partition datasets for federated learning using framework agnostic, reproducible, and thoroughly tested flwr-datasets library., center=(1272,461), inner_text=Flower Datasets

Partition datasets for federated learning using framework agnostic, reproducible, and thoroughly tested flwr-datasets library., url='https://flower.ai/docs/datasets/'
            heading Flower Datasets
            paragraph
        [732] link Flower Baselines Easily reproduce and build upon well-known research results with Flower Baselines., center=(648,675), inner_text=Flower Baselines

Easily reproduce and build upon well-known research results with Flower Baselines., url='https://flower.ai/docs/baselines/'
            heading Flower Baselines
            paragraph
        [737] link Example Projects Start easily by building on top of full Flower example projects covering a wide range of ML frameworks, platforms, and scenarios., center=(1272,675), inner_text=Example Projects

Start easily by building on top of full Flower example projects covering a wide range of ML frameworks, platforms, and scenarios., url='https://flower.ai/docs/examples/'
            heading Example Projects
            paragraph
        [742] link Flower Android SDK (coming in 2025) Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate Android on-device training with the Flower Android SDK., center=(648,889), inner_text=Flower Android SDK (coming in 2025)

Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate Android on-device training with the Flower Android SDK., url='https://flower.ai/docs/android/'
            heading Flower Android SDK (coming in 2025)
            paragraph
        [747] link Flower iOS SDK (coming in 2025) Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate iOS on-device training with the Flower iOS SDK., center=(1272,889), inner_text=Flower iOS SDK (coming in 2025)

Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate iOS on-device training with the Flower iOS SDK., url='https://flower.ai/docs/ios/documentation/flwr/'
            heading Flower iOS SDK (coming in 2025)
            paragraph
        link Flower C++ SDK (coming in 2025) Under construction 🚧 Federate native on-device training with the Flower C++ SDK. Code example available, full docs coming soon., url='https://github.com/adap/flower/tree/main/examples/quickstart-cpp'
            [754] heading Flower C++ SDK (coming in 2025), center=(648,1072)
            paragraph
    [709] span, center=(1486,44), inner_text=Register or Log In
    contentinfo Footer
        heading Footer
        image Flower Logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Flogo_secondary-w-border.411ce221.png&w=64&q=75'
        paragraph
            StaticText Flower: The Friendly
            StaticText Federated Learning Framework.
        link Slack, url='https://flower.ai/join-slack/'
        link LinkedIn, url='https://de.linkedin.com/company/flwrlabs'
        link Twitter, url='https://twitter.com/flwrlabs'
        link GitHub, url='https://github.com/adap/flower'
        link YouTube, url='https://www.youtube.com/@flowerlabs'
        heading Documentation
        list
            listitem
                link Flower Framework, url='https://flower.ai/docs/framework/'
            listitem
                link Flower Baselines, url='https://flower.ai/docs/baselines/'
            listitem
                link Flower Android SDK, url='https://flower.ai/docs/android/'
            listitem
                link Flower iOS SDK, url='https://flower.ai/docs/ios/documentation/flwr/'
            listitem
                link Flower C++ SDK, url='https://github.com/adap/flower/tree/main/examples/quickstart-cpp'
            listitem
                link Example Projects, url='https://flower.ai/docs/examples/'
        heading Events
        list
            listitem
                link All Events, url='https://flower.ai/events/'
            listitem
                link Flower Monthly, url='https://flower.ai/events/flower-monthly/'
            listitem
                link Flower AI Summit 2025, url='https://flower.ai/events/flower-ai-summit-2025/'
            listitem
                link Flower AI Summit 2024, url='https://flower.ai/events/flower-ai-summit-2024/'
            listitem
                link Flower Summit 2023, url='https://flower.ai/events/flower-summit-2023/'
            listitem
                link Flower Summit 2022, url='https://flower.ai/events/flower-summit-2022/'
            listitem
                link Flower Summit 2021, url='https://flower.ai/events/flower-summit-2021/'
        heading Other
        list
            listitem
                link Blog, url='https://flower.ai/blog/'
            listitem
                link Discuss, url='https://discuss.flower.ai/'
            listitem
                link Careers, url='https://flower.ai/careers'
            listitem
                link Pilot Program, url='https://flower.ai/pilot'
            listitem
                link FlowerTune, url='https://flower.ai/benchmarks/llm-leaderboard/'
            listitem
                link Glossary, url='https://flower.ai/glossary'
            listitem
                link Flower Visuals, url='https://flower.ai/visuals'
            listitem
                link Event Calendar, url='https://calendar.google.com/calendar/u/0?cid=Y18zOWI5ODZiZDhjMmI5MTEzZDE0NmRmZTdjMmQyM2M0MjI5N2Y2ZmVlN2FjYTk5ZGY5MWUzZGJmZTcwMzc4N2I2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20'
        heading Socials
        list
            listitem
                link Slack, url='https://flower.ai/join-slack/'
            listitem
                link LinkedIn, url='https://de.linkedin.com/company/flwrlabs'
            listitem
                link Twitter / X, url='https://twitter.com/flwrlabs'
            listitem
                link GitHub, url='https://github.com/adap/flower'
            listitem
                link YouTube, url='https://www.youtube.com/@flowerlabs'
            listitem
                link bilibili, url='https://space.bilibili.com/3546373735582167'
        heading Legal
        list
            listitem
                link Imprint, url='https://flower.ai/imprint/'
            listitem
                link Privacy, url='https://flower.ai/privacy/'
        paragraph
            StaticText © 2024 Flower Labs GmbH. All rights reserved.
    alert, atomic
        StaticText Flower Documentation

Reasoning for action: I clicked on the 'Documentation' link (element 69) because the user's goal is to explore the Flower documentation. This action is a crucial first step to navigate to the comprehensive documentation section where tutorials and guides for implementing Flower are available. It aligns with the user's intent to quickly get started with implementing Flower in their projects.

Action: click(69) # Click on the Documentation link to explore the documentation section.

Change Description: After clicking the Documentation link, the browser transitioned from the Flower homepage to the Flower Documentation page, where the main content updated to include headings and links related to different documentation sections, including the Flower Framework, Datasets, and Baselines. The overall focus shifted from the general introduction of the Flower framework to specific resources and guides on utilizing the framework.

Screenshot before:Screenshot after:---

Step 2:

Url (before/after):

https://flower.ai/docs/

https://flower.ai/docs/framework/

Content (before/after):

RootWebArea Flower Documentation, focused, url='https://flower.ai/docs/'
    [678] link Flower Flower, center=(399,44), inner_text=Flower, url='https://flower.ai/'
        image Flower, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Flogo_with_text.a0ff4459.png&w=128&q=75'
    navigation
        [689] link Documentation, center=(540,44), url='https://flower.ai/docs/'
Show more
        [690] link Blog, center=(645,44), url='https://flower.ai/blog/'
        [692] button Events, center=(732,44), expanded=False, type=button
        [695] link Discuss, center=(832,44), url='https://discuss.flower.ai/'
    [699] link Star 5.3k, center=(1153,44), url='https://github.com/adap/flower'
    [702] link Slack Join Slack, center=(1297,44), inner_text=Join Slack, url='https://flower.ai/join-slack/'
        image Slack
    StaticText Register or Log In
    main
        heading Documentation
        paragraph
            StaticText Docs for all Flower projects
        [722] link Flower Framework Build, simulate, and deploy federated learning at scale with the core Flower Framework. Easily federate existing machine learning projects with the Flower Python SDK., center=(648,461), inner_text=Flower Framework

Build, simulate, and deploy federated learning at scale with the core Flower Framework. Easily federate existing machine learning projects with the Flower Python SDK., url='https://flower.ai/docs/framework/'
            heading Flower Framework
            paragraph
        [727] link Flower Datasets Partition datasets for federated learning using framework agnostic, reproducible, and thoroughly tested flwr-datasets library., center=(1272,461), inner_text=Flower Datasets

Partition datasets for federated learning using framework agnostic, reproducible, and thoroughly tested flwr-datasets library., url='https://flower.ai/docs/datasets/'
            heading Flower Datasets
            paragraph
        [732] link Flower Baselines Easily reproduce and build upon well-known research results with Flower Baselines., center=(648,675), inner_text=Flower Baselines

Easily reproduce and build upon well-known research results with Flower Baselines., url='https://flower.ai/docs/baselines/'
            heading Flower Baselines
            paragraph
        [737] link Example Projects Start easily by building on top of full Flower example projects covering a wide range of ML frameworks, platforms, and scenarios., center=(1272,675), inner_text=Example Projects

Start easily by building on top of full Flower example projects covering a wide range of ML frameworks, platforms, and scenarios., url='https://flower.ai/docs/examples/'
            heading Example Projects
            paragraph
        [742] link Flower Android SDK (coming in 2025) Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate Android on-device training with the Flower Android SDK., center=(648,889), inner_text=Flower Android SDK (coming in 2025)

Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate Android on-device training with the Flower Android SDK., url='https://flower.ai/docs/android/'
            heading Flower Android SDK (coming in 2025)
            paragraph
        [747] link Flower iOS SDK (coming in 2025) Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate iOS on-device training with the Flower iOS SDK., center=(1272,889), inner_text=Flower iOS SDK (coming in 2025)

Under construction 🚧 Build and deploy federated learning clients at scale with Flower. Easily federate iOS on-device training with the Flower iOS SDK., url='https://flower.ai/docs/ios/documentation/flwr/'
            heading Flower iOS SDK (coming in 2025)
            paragraph
        link Flower C++ SDK (coming in 2025) Under construction 🚧 Federate native on-device training with the Flower C++ SDK. Code example available, full docs coming soon., url='https://github.com/adap/flower/tree/main/examples/quickstart-cpp'
            [754] heading Flower C++ SDK (coming in 2025), center=(648,1072)
            paragraph
    [709] span, center=(1486,44), inner_text=Register or Log In
    contentinfo Footer
        heading Footer
        image Flower Logo, url='https://flower.ai/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Flogo_secondary-w-border.411ce221.png&w=64&q=75'
        paragraph
            StaticText Flower: The Friendly
            StaticText Federated Learning Framework.
        link Slack, url='https://flower.ai/join-slack/'
        link LinkedIn, url='https://de.linkedin.com/company/flwrlabs'
        link Twitter, url='https://twitter.com/flwrlabs'
        link GitHub, url='https://github.com/adap/flower'
        link YouTube, url='https://www.youtube.com/@flowerlabs'
        heading Documentation
        list
            listitem
                link Flower Framework, url='https://flower.ai/docs/framework/'
            listitem
                link Flower Baselines, url='https://flower.ai/docs/baselines/'
            listitem
                link Flower Android SDK, url='https://flower.ai/docs/android/'
            listitem
                link Flower iOS SDK, url='https://flower.ai/docs/ios/documentation/flwr/'
            listitem
                link Flower C++ SDK, url='https://github.com/adap/flower/tree/main/examples/quickstart-cpp'
            listitem
                link Example Projects, url='https://flower.ai/docs/examples/'
        heading Events
        list
            listitem
                link All Events, url='https://flower.ai/events/'
            listitem
                link Flower Monthly, url='https://flower.ai/events/flower-monthly/'
            listitem
                link Flower AI Summit 2025, url='https://flower.ai/events/flower-ai-summit-2025/'
            listitem
                link Flower AI Summit 2024, url='https://flower.ai/events/flower-ai-summit-2024/'
            listitem
                link Flower Summit 2023, url='https://flower.ai/events/flower-summit-2023/'
            listitem
                link Flower Summit 2022, url='https://flower.ai/events/flower-summit-2022/'
            listitem
                link Flower Summit 2021, url='https://flower.ai/events/flower-summit-2021/'
        heading Other
        list
            listitem
                link Blog, url='https://flower.ai/blog/'
            listitem
                link Discuss, url='https://discuss.flower.ai/'
            listitem
                link Careers, url='https://flower.ai/careers'
            listitem
                link Pilot Program, url='https://flower.ai/pilot'
            listitem
                link FlowerTune, url='https://flower.ai/benchmarks/llm-leaderboard/'
            listitem
                link Glossary, url='https://flower.ai/glossary'
            listitem
                link Flower Visuals, url='https://flower.ai/visuals'
            listitem
                link Event Calendar, url='https://calendar.google.com/calendar/u/0?cid=Y18zOWI5ODZiZDhjMmI5MTEzZDE0NmRmZTdjMmQyM2M0MjI5N2Y2ZmVlN2FjYTk5ZGY5MWUzZGJmZTcwMzc4N2I2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20'
        heading Socials
        list
            listitem
                link Slack, url='https://flower.ai/join-slack/'
            listitem
                link LinkedIn, url='https://de.linkedin.com/company/flwrlabs'
            listitem
                link Twitter / X, url='https://twitter.com/flwrlabs'
            listitem
                link GitHub, url='https://github.com/adap/flower'
            listitem
                link YouTube, url='https://www.youtube.com/@flowerlabs'
            listitem
                link bilibili, url='https://space.bilibili.com/3546373735582167'
        heading Legal
        list
            listitem
                link Imprint, url='https://flower.ai/imprint/'
            listitem
                link Privacy, url='https://flower.ai/privacy/'
        paragraph
            StaticText © 2024 Flower Labs GmbH. All rights reserved.
    alert, atomic
        StaticText Flower Documentation
RootWebArea Flower Framework, focused, url='https://flower.ai/docs/framework/'
    LabelText
        StaticText Hide navigation sidebar
    LabelText
        StaticText Hide table of contents sidebar
Show more
    link Skip to content, url='https://flower.ai/docs/framework/#furo-main-content'
    complementary
        [87] link Logo main, center=(369,156), inner_text=main, url='https://flower.ai/docs/framework/#'
            image Logo, url='https://flower.ai/docs/framework/_static/flower-logo.png'
        search
            [92] textbox Search, center=(369,341), contenteditable=True
        heading TUTORIAL
        list
            listitem
                [102] link What is Federated Learning?, center=(369,437), url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            listitem
                [104] link Get started with Flower, center=(369,472), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html'
            listitem
                [106] link Use a federated learning strategy, center=(369,516), url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
            listitem
                [108] link Build a strategy from scratch, center=(369,560), url='https://flower.ai/docs/framework/tutorial-series-build-a-strategy-from-scratch-pytorch.html'
            listitem
                [110] link Customize the client, center=(369,595), url='https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html'
        heading QUICKSTART TUTORIALS
        list
            listitem
                [115] link Quickstart PyTorch, center=(369,680), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
            listitem
                [117] link Quickstart TensorFlow, center=(369,715), url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
            listitem
                [119] link Quickstart MLX, center=(369,750), url='https://flower.ai/docs/framework/tutorial-quickstart-mlx.html'
            listitem
                [121] link Quickstart 🤗 Transformers, center=(369,785), url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
            listitem
                [123] link Quickstart JAX, center=(369,820), url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
            listitem
                [125] link Quickstart Pandas, center=(369,856), url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
            listitem
                [127] link Quickstart fastai, center=(369,891), url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
            listitem
                [129] link Quickstart PyTorch Lightning, center=(369,926), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
            listitem
                [131] link Quickstart scikit-learn, center=(369,961), url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
            listitem
                link Quickstart XGBoost, url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
            listitem
                link Quickstart Android, url='https://flower.ai/docs/framework/tutorial-quickstart-android.html'
            listitem
                link Quickstart iOS, url='https://flower.ai/docs/framework/tutorial-quickstart-ios.html'
        heading HOW-TO GUIDES
        list
            listitem
                link Install Flower, url='https://flower.ai/docs/framework/how-to-install-flower.html'
            listitem
                link Configure Clients, url='https://flower.ai/docs/framework/how-to-configure-clients.html'
            listitem
                link Design stateful ClientApps, url='https://flower.ai/docs/framework/how-to-design-stateful-clients.html'
            listitem
                link Use strategies, url='https://flower.ai/docs/framework/how-to-use-strategies.html'
            listitem
                link Implement strategies, url='https://flower.ai/docs/framework/how-to-implement-strategies.html'
            listitem
                link Aggregate evaluation results, url='https://flower.ai/docs/framework/how-to-aggregate-evaluation-results.html'
            listitem
                link Save and Load Model Checkpoints, url='https://flower.ai/docs/framework/how-to-save-and-load-model-checkpoints.html'
            listitem
                link Run simulations, url='https://flower.ai/docs/framework/how-to-run-simulations.html'
            listitem
                link Enable TLS connections, url='https://flower.ai/docs/framework/how-to-enable-tls-connections.html'
            listitem
                link Use Built-in Mods, url='https://flower.ai/docs/framework/how-to-use-built-in-mods.html'
            listitem
                link Use Differential Privacy, url='https://flower.ai/docs/framework/how-to-use-differential-privacy.html'
            listitem
                link Authenticate SuperNodes, url='https://flower.ai/docs/framework/how-to-authenticate-supernodes.html'
            listitem
                link Implement FedBN, url='https://flower.ai/docs/framework/how-to-implement-fedbn.html'
            listitem
                link Run Flower on Azure, url='https://flower.ai/docs/framework/how-to-run-flower-on-azure.html'
            listitem
                link Use CLI JSON output, url='https://flower.ai/docs/framework/how-to-use-cli-json-output.html'
            listitem
                link Run Flower using Docker, url='https://flower.ai/docs/framework/docker/index.html'
                LabelText
                    StaticText Toggle navigation of Run Flower using Docker
                    SvgRoot
                        group Expand
            listitem
                link Upgrade to Flower 1.0, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.0.html'
            listitem
                link Upgrade to Flower 1.13, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.13.html'
        heading EXPLANATIONS
        list
            listitem
                link Federated evaluation, url='https://flower.ai/docs/framework/explanation-federated-evaluation.html'
            listitem
                link Differential Privacy, url='https://flower.ai/docs/framework/explanation-differential-privacy.html'
            listitem
                link Flower Architecture, url='https://flower.ai/docs/framework/explanation-flower-architecture.html'
        heading API REFERENCE
        list
            listitem
                link flwr, url='https://flower.ai/docs/framework/ref-api/flwr.html'
                LabelText
                    StaticText Toggle navigation of flwr
                    SvgRoot
                        group Expand
        list
            listitem
                link Flower CLI reference, url='https://flower.ai/docs/framework/ref-api-cli.html'
        heading REFERENCE DOCS
        list
            listitem
                link Example projects, url='https://flower.ai/docs/framework/ref-example-projects.html'
            listitem
                link Telemetry, url='https://flower.ai/docs/framework/ref-telemetry.html'
            listitem
                link Changelog, url='https://flower.ai/docs/framework/ref-changelog.html'
            listitem
                link FAQ, url='https://flower.ai/docs/framework/ref-faq.html'
        heading CONTRIBUTOR TUTORIALS
        list
            listitem
                link Contribute on GitHub, url='https://flower.ai/docs/framework/contributor-tutorial-contribute-on-github.html'
            listitem
                link Get started as a contributor, url='https://flower.ai/docs/framework/contributor-tutorial-get-started-as-a-contributor.html'
        heading CONTRIBUTOR HOW-TO GUIDES
        list
            listitem
                link Install development versions, url='https://flower.ai/docs/framework/contributor-how-to-install-development-versions.html'
            listitem
                link Set up a virtual env, url='https://flower.ai/docs/framework/contributor-how-to-set-up-a-virtual-env.html'
            listitem
                link Develop in VSCode Dev Containers, url='https://flower.ai/docs/framework/contributor-how-to-develop-in-vscode-dev-containers.html'
            listitem
                link Write documentation, url='https://flower.ai/docs/framework/contributor-how-to-write-documentation.html'
            listitem
                link Release Flower, url='https://flower.ai/docs/framework/contributor-how-to-release-flower.html'
            listitem
                link Contribute translations, url='https://flower.ai/docs/framework/contributor-how-to-contribute-translations.html'
            listitem
                link How to Build Docker Flower Images Locally, url='https://flower.ai/docs/framework/contributor-how-to-build-docker-images.html'
        heading CONTRIBUTOR EXPLANATIONS
        list
            listitem
                link Public and private APIs, url='https://flower.ai/docs/framework/contributor-explanation-public-and-private-apis.html'
        heading CONTRIBUTOR REFERENCES
        list
            listitem
                link Good first contributions, url='https://flower.ai/docs/framework/contributor-ref-good-first-contributions.html'
            listitem
                link Secure Aggregation Protocols, url='https://flower.ai/docs/framework/contributor-ref-secure-aggregation-protocols.html'
        [525] LabelText, center=(369,1004), inner_text=Versions
            StaticText Versions
        list
            listitem
                ListMarker •
                link v1.8.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.9.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.10.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.11.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.11.1, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.12.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.13.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.13.1, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.14.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link main, url='javascript:void(0);'
        [551] link 🇬🇧, center=(276,1047), url='https://flower.ai/docs/framework/main/en/index.html'
        [552] link 🇫🇷, center=(350,1047), url='https://flower.ai/docs/framework/main/fr/index.html'
        [553] link 🇨🇳, center=(424,1047), url='https://flower.ai/docs/framework/main/zh_Hans/index.html'
        [554] link 🇰🇷, center=(480,1047), url='https://flower.ai/docs/framework/main/ko/index.html'
    [563] link View this page, center=(1323,42), title=View this page, url='https://flower.ai/docs/framework/_sources/index.rst.txt'
        image
    [567] button Toggle Light / Dark / Auto color theme, center=(1354,40)
        SvgRoot
            group Light mode
    main
        heading Flower Framework Documentation
        paragraph
            StaticText Welcome to Flower’s documentation.
            [582] link Flower, center=(917,171), url='https://flower.ai/'
            StaticText is a friendly federated learning framework.
        heading Join the Flower Community
        paragraph
            StaticText The Flower Community is growing quickly - we’re a friendly group of researchers, engineers, students, professionals, academics, and other enthusiasts.
        paragraph
            [588] link Join us on Slack, center=(638,355), url='https://flower.ai/join-slack'
        heading Flower Framework
        paragraph
            StaticText The user guide is targeted at researchers and developers who want to use Flower to bring existing machine learning workloads into a federated setting. One of Flower’s design goals was to make this simple. Read on to learn more.
        heading Tutorials
        paragraph
            StaticText A learning-oriented series of federated learning tutorials, the best place to start.
        heading TUTORIAL
        list
            listitem
                ListMarker •
                [603] link What is Federated Learning?, center=(702,669), url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            listitem
                ListMarker •
                [605] link Get started with Flower, center=(680,696), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html'
            listitem
                ListMarker •
                [607] link Use a federated learning strategy, center=(725,722), url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
            listitem
                ListMarker •
                [609] link Build a strategy from scratch, center=(704,749), url='https://flower.ai/docs/framework/tutorial-series-build-a-strategy-from-scratch-pytorch.html'
            listitem
                ListMarker •
                [611] link Customize the client, center=(667,775), url='https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html'
        paragraph
            StaticText QUICKSTART TUTORIALS:
            [614] link PyTorch, center=(815,810), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
            StaticText |
            [616] link TensorFlow, center=(914,810), url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
            StaticText |
            [618] link MLX, center=(998,810), url='https://flower.ai/docs/framework/tutorial-quickstart-mlx.html'
            StaticText |
            [620] link 🤗 Transformers, center=(1105,810), url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
            StaticText |
            [622] link JAX, center=(1208,810), url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
            StaticText |
            [624] link Pandas, center=(1271,810), url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
            StaticText |
            [626] link fastai, center=(580,836), url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
            StaticText |
            [628] link PyTorch Lightning, center=(699,836), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
            StaticText |
            [630] link scikit-learn, center=(842,836), url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
            StaticText |
            [632] link XGBoost, center=(945,836), url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
            StaticText |
            [634] link Android, center=(1033,836), url='https://flower.ai/docs/framework/tutorial-quickstart-android.html'
            StaticText |
            [636] link iOS, center=(1100,836), url='https://flower.ai/docs/framework/tutorial-quickstart-ios.html'
        paragraph
            StaticText We also made video tutorials for PyTorch:
        Iframe
            RootWebArea Flower Tutorial | Federated Learning Quickstart with Flower and PyTorch - YouTube, url='https://www.youtube.com/embed/jOmmuzMIQ4c'
                [a30] link Photo image of Flower, center=(587,935)
                [a38] link Flower Tutorial | Federated Learning Quickstart with Flower and PyTorch, center=(870,935), url='https://www.youtube.com/watch?v=jOmmuzMIQ4c'
                [a55] button Share, center=(1157,933), hasPopup='menu'
                    image
                [a91] button Play, center=(879,1100)
                    image
                generic, atomic
                [a317] link Watch on YouTube, center=(641,1268), url='https://www.youtube.com/watch?v=jOmmuzMIQ4c&embeds_referring_euri=https%3A%2F%2Fflower.ai%2F'
        paragraph
            StaticText And TensorFlow:
        Iframe
            RootWebArea Flower Tutorial | Federated Learning Quickstart with Flower and TensorFlow - YouTube, url='https://www.youtube.com/embed/FGTc2TQq7VM'
                [b30] link Photo image of Flower, center=(587,1377)
                [b38] link Flower Tutorial | Federated Learning Quickstart with Flower and TensorFlow, center=(870,1378), url='https://www.youtube.com/watch?v=FGTc2TQq7VM'
                [b55] button Share, center=(1157,1375), hasPopup='menu'
                    image
                [b91] button Play, center=(879,1542)
                    image
                generic, atomic
                [b317] link Watch on YouTube, center=(641,1711), url='https://www.youtube.com/watch?v=FGTc2TQq7VM&embeds_referring_euri=https%3A%2F%2Fflower.ai%2F'
        heading How-to guides
        paragraph
            StaticText Problem-oriented how-to guides show step-by-step how to achieve a specific goal.
        heading HOW-TO GUIDES
        list
            listitem
                ListMarker •
                link Install Flower, url='https://flower.ai/docs/framework/how-to-install-flower.html'
            listitem
                ListMarker •
                link Configure Clients, url='https://flower.ai/docs/framework/how-to-configure-clients.html'
            listitem
                ListMarker •
                link Design stateful ClientApps, url='https://flower.ai/docs/framework/how-to-design-stateful-clients.html'
            listitem
                ListMarker •
                link Use strategies, url='https://flower.ai/docs/framework/how-to-use-strategies.html'
            listitem
                ListMarker •
                link Implement strategies, url='https://flower.ai/docs/framework/how-to-implement-strategies.html'
            listitem
                ListMarker •
                link Aggregate evaluation results, url='https://flower.ai/docs/framework/how-to-aggregate-evaluation-results.html'
            listitem
                ListMarker •
                link Save and Load Model Checkpoints, url='https://flower.ai/docs/framework/how-to-save-and-load-model-checkpoints.html'
            listitem
                ListMarker •
                link Run simulations, url='https://flower.ai/docs/framework/how-to-run-simulations.html'
            listitem
                ListMarker •
                link Enable TLS connections, url='https://flower.ai/docs/framework/how-to-enable-tls-connections.html'
            listitem
                ListMarker •
                link Use Built-in Mods, url='https://flower.ai/docs/framework/how-to-use-built-in-mods.html'
            listitem
                ListMarker •
                link Use Differential Privacy, url='https://flower.ai/docs/framework/how-to-use-differential-privacy.html'
            listitem
                ListMarker •
                link Authenticate SuperNodes, url='https://flower.ai/docs/framework/how-to-authenticate-supernodes.html'
            listitem
                ListMarker •
                link Implement FedBN, url='https://flower.ai/docs/framework/how-to-implement-fedbn.html'
            listitem
                ListMarker •
                link Run Flower on Azure, url='https://flower.ai/docs/framework/how-to-run-flower-on-azure.html'
            listitem
                ListMarker •
                link Use CLI JSON output, url='https://flower.ai/docs/framework/how-to-use-cli-json-output.html'
            listitem
                ListMarker •
                link Run Flower using Docker, url='https://flower.ai/docs/framework/docker/index.html'
            listitem
                ListMarker •
                link Upgrade to Flower 1.0, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.0.html'
            listitem
                ListMarker •
                link Upgrade to Flower 1.13, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.13.html'
        heading Explanations
        paragraph
            StaticText Understanding-oriented concept guides explain and discuss key topics and underlying ideas behind Flower and collaborative AI.
        heading EXPLANATIONS
        list
            listitem
                ListMarker •
                link Federated evaluation, url='https://flower.ai/docs/framework/explanation-federated-evaluation.html'
            listitem
                ListMarker •
                link Differential Privacy, url='https://flower.ai/docs/framework/explanation-differential-privacy.html'
            listitem
                ListMarker •
                link Flower Architecture, url='https://flower.ai/docs/framework/explanation-flower-architecture.html'
        heading References
        paragraph
            StaticText Information-oriented API reference and other reference material.
        table
            rowgroup
                row
                    cell flwr
                        paragraph
                            link flwr, url='https://flower.ai/docs/framework/ref-api/flwr.html#module-flwr'
                                code
                    cell Flower main package.
                        paragraph
        list
            listitem
                ListMarker •
                link Flower CLI reference, url='https://flower.ai/docs/framework/ref-api-cli.html'
                list
                    listitem
                        ListMarker ◦
                        link Basic Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#basic-commands'
                    listitem
                        ListMarker ◦
                        link Advanced Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#advanced-commands'
                    listitem
                        ListMarker ◦
                        link Technical Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#technical-commands'
                    listitem
                        ListMarker ◦
                        link Deprecated Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#deprecated-commands'
        heading REFERENCE DOCS
        list
            listitem
                ListMarker •
                link Example projects, url='https://flower.ai/docs/framework/ref-example-projects.html'
            listitem
                ListMarker •
                link Telemetry, url='https://flower.ai/docs/framework/ref-telemetry.html'
            listitem
                ListMarker •
                link Changelog, url='https://flower.ai/docs/framework/ref-changelog.html'
            listitem
                ListMarker •
                link FAQ, url='https://flower.ai/docs/framework/ref-faq.html'
        heading Contributor docs
        paragraph
            StaticText The Flower community welcomes contributions. The following docs are intended to help along the way.
        heading CONTRIBUTOR TUTORIALS
        list
            listitem
                ListMarker •
                link Contribute on GitHub, url='https://flower.ai/docs/framework/contributor-tutorial-contribute-on-github.html'
            listitem
                ListMarker •
                link Get started as a contributor, url='https://flower.ai/docs/framework/contributor-tutorial-get-started-as-a-contributor.html'
        heading CONTRIBUTOR HOW-TO GUIDES
        list
            listitem
                ListMarker •
                link Install development versions, url='https://flower.ai/docs/framework/contributor-how-to-install-development-versions.html'
            listitem
                ListMarker •
                link Set up a virtual env, url='https://flower.ai/docs/framework/contributor-how-to-set-up-a-virtual-env.html'
            listitem
                ListMarker •
                link Develop in VSCode Dev Containers, url='https://flower.ai/docs/framework/contributor-how-to-develop-in-vscode-dev-containers.html'
            listitem
                ListMarker •
                link Write documentation, url='https://flower.ai/docs/framework/contributor-how-to-write-documentation.html'
            listitem
                ListMarker •
                link Release Flower, url='https://flower.ai/docs/framework/contributor-how-to-release-flower.html'
            listitem
                ListMarker •
                link Contribute translations, url='https://flower.ai/docs/framework/contributor-how-to-contribute-translations.html'
            listitem
                ListMarker •
                link How to Build Docker Flower Images Locally, url='https://flower.ai/docs/framework/contributor-how-to-build-docker-images.html'
        heading CONTRIBUTOR EXPLANATIONS
        list
            listitem
                ListMarker •
                link Public and private APIs, url='https://flower.ai/docs/framework/contributor-explanation-public-and-private-apis.html'
        heading CONTRIBUTOR REFERENCES
        list
            listitem
                ListMarker •
                link Good first contributions, url='https://flower.ai/docs/framework/contributor-ref-good-first-contributions.html'
            listitem
                ListMarker •
                link Secure Aggregation Protocols, url='https://flower.ai/docs/framework/contributor-ref-secure-aggregation-protocols.html'
    contentinfo
        link Next What is Federated Learning?, url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            StaticText Next
            SvgRoot
                group Expand
        StaticText Copyright © 2025 Flower Labs GmbH
        StaticText Made with
        link Sphinx, url='https://www.sphinx-doc.org/'
        StaticText and
        link @pradyunsg, url='https://pradyunsg.me/'
        StaticText 's
        link Furo, url='https://github.com/pradyunsg/furo'
    complementary
        StaticText ON THIS PAGE
        list
            listitem
                list
                    listitem
                        [810] link Join the Flower Community, center=(1534,67), url='https://flower.ai/docs/framework/#join-the-flower-community'
                    listitem
                        [812] link Flower Framework, center=(1505,91), url='https://flower.ai/docs/framework/#flower-framework'
                        list
                            listitem
                                [815] link Tutorials, center=(1490,115), url='https://flower.ai/docs/framework/#tutorials'
                                list
                            listitem
                                [818] link How-to guides, center=(1510,139), url='https://flower.ai/docs/framework/#how-to-guides'
                            listitem
                                [820] link Explanations, center=(1505,163), url='https://flower.ai/docs/framework/#explanations'
                            listitem
                                [822] link References, center=(1499,187), url='https://flower.ai/docs/framework/#references'
                                list
                    listitem
                        [825] link Contributor docs, center=(1500,212), url='https://flower.ai/docs/framework/#contributor-docs'
                        list

Reasoning for action: Clicking on the link for 'Flower Framework' is a direct step towards accessing the specific documentation that includes tutorials and guides for implementing Flower, as specified in the user story. This action helps advance the task by providing the necessary resources to understand how to utilize Flower in projects.

Action: click(722) # Click on the Flower Framework link to explore its documentation.

Change Description: The browser navigated from the main Flower Documentation page to the Flower Framework documentation page, transitioning the content displayed to focus on tutorials, quickly start guides, how-to guides, and explanations related to the Flower Framework.

Screenshot before:Screenshot after:---

Step 3:

Url (before/after):

https://flower.ai/docs/framework/

https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html

Content (before/after):

RootWebArea Flower Framework, focused, url='https://flower.ai/docs/framework/'
    LabelText
        StaticText Hide navigation sidebar
    LabelText
        StaticText Hide table of contents sidebar
Show more
    link Skip to content, url='https://flower.ai/docs/framework/#furo-main-content'
    complementary
        [87] link Logo main, center=(369,156), inner_text=main, url='https://flower.ai/docs/framework/#'
            image Logo, url='https://flower.ai/docs/framework/_static/flower-logo.png'
        search
            [92] textbox Search, center=(369,341), contenteditable=True
        heading TUTORIAL
        list
            listitem
                [102] link What is Federated Learning?, center=(369,437), url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            listitem
                [104] link Get started with Flower, center=(369,472), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html'
            listitem
                [106] link Use a federated learning strategy, center=(369,516), url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
            listitem
                [108] link Build a strategy from scratch, center=(369,560), url='https://flower.ai/docs/framework/tutorial-series-build-a-strategy-from-scratch-pytorch.html'
            listitem
                [110] link Customize the client, center=(369,595), url='https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html'
        heading QUICKSTART TUTORIALS
        list
            listitem
                [115] link Quickstart PyTorch, center=(369,680), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
            listitem
                [117] link Quickstart TensorFlow, center=(369,715), url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
            listitem
                [119] link Quickstart MLX, center=(369,750), url='https://flower.ai/docs/framework/tutorial-quickstart-mlx.html'
            listitem
                [121] link Quickstart 🤗 Transformers, center=(369,785), url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
            listitem
                [123] link Quickstart JAX, center=(369,820), url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
            listitem
                [125] link Quickstart Pandas, center=(369,856), url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
            listitem
                [127] link Quickstart fastai, center=(369,891), url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
            listitem
                [129] link Quickstart PyTorch Lightning, center=(369,926), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
            listitem
                [131] link Quickstart scikit-learn, center=(369,961), url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
            listitem
                link Quickstart XGBoost, url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
            listitem
                link Quickstart Android, url='https://flower.ai/docs/framework/tutorial-quickstart-android.html'
            listitem
                link Quickstart iOS, url='https://flower.ai/docs/framework/tutorial-quickstart-ios.html'
        heading HOW-TO GUIDES
        list
            listitem
                link Install Flower, url='https://flower.ai/docs/framework/how-to-install-flower.html'
            listitem
                link Configure Clients, url='https://flower.ai/docs/framework/how-to-configure-clients.html'
            listitem
                link Design stateful ClientApps, url='https://flower.ai/docs/framework/how-to-design-stateful-clients.html'
            listitem
                link Use strategies, url='https://flower.ai/docs/framework/how-to-use-strategies.html'
            listitem
                link Implement strategies, url='https://flower.ai/docs/framework/how-to-implement-strategies.html'
            listitem
                link Aggregate evaluation results, url='https://flower.ai/docs/framework/how-to-aggregate-evaluation-results.html'
            listitem
                link Save and Load Model Checkpoints, url='https://flower.ai/docs/framework/how-to-save-and-load-model-checkpoints.html'
            listitem
                link Run simulations, url='https://flower.ai/docs/framework/how-to-run-simulations.html'
            listitem
                link Enable TLS connections, url='https://flower.ai/docs/framework/how-to-enable-tls-connections.html'
            listitem
                link Use Built-in Mods, url='https://flower.ai/docs/framework/how-to-use-built-in-mods.html'
            listitem
                link Use Differential Privacy, url='https://flower.ai/docs/framework/how-to-use-differential-privacy.html'
            listitem
                link Authenticate SuperNodes, url='https://flower.ai/docs/framework/how-to-authenticate-supernodes.html'
            listitem
                link Implement FedBN, url='https://flower.ai/docs/framework/how-to-implement-fedbn.html'
            listitem
                link Run Flower on Azure, url='https://flower.ai/docs/framework/how-to-run-flower-on-azure.html'
            listitem
                link Use CLI JSON output, url='https://flower.ai/docs/framework/how-to-use-cli-json-output.html'
            listitem
                link Run Flower using Docker, url='https://flower.ai/docs/framework/docker/index.html'
                LabelText
                    StaticText Toggle navigation of Run Flower using Docker
                    SvgRoot
                        group Expand
            listitem
                link Upgrade to Flower 1.0, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.0.html'
            listitem
                link Upgrade to Flower 1.13, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.13.html'
        heading EXPLANATIONS
        list
            listitem
                link Federated evaluation, url='https://flower.ai/docs/framework/explanation-federated-evaluation.html'
            listitem
                link Differential Privacy, url='https://flower.ai/docs/framework/explanation-differential-privacy.html'
            listitem
                link Flower Architecture, url='https://flower.ai/docs/framework/explanation-flower-architecture.html'
        heading API REFERENCE
        list
            listitem
                link flwr, url='https://flower.ai/docs/framework/ref-api/flwr.html'
                LabelText
                    StaticText Toggle navigation of flwr
                    SvgRoot
                        group Expand
        list
            listitem
                link Flower CLI reference, url='https://flower.ai/docs/framework/ref-api-cli.html'
        heading REFERENCE DOCS
        list
            listitem
                link Example projects, url='https://flower.ai/docs/framework/ref-example-projects.html'
            listitem
                link Telemetry, url='https://flower.ai/docs/framework/ref-telemetry.html'
            listitem
                link Changelog, url='https://flower.ai/docs/framework/ref-changelog.html'
            listitem
                link FAQ, url='https://flower.ai/docs/framework/ref-faq.html'
        heading CONTRIBUTOR TUTORIALS
        list
            listitem
                link Contribute on GitHub, url='https://flower.ai/docs/framework/contributor-tutorial-contribute-on-github.html'
            listitem
                link Get started as a contributor, url='https://flower.ai/docs/framework/contributor-tutorial-get-started-as-a-contributor.html'
        heading CONTRIBUTOR HOW-TO GUIDES
        list
            listitem
                link Install development versions, url='https://flower.ai/docs/framework/contributor-how-to-install-development-versions.html'
            listitem
                link Set up a virtual env, url='https://flower.ai/docs/framework/contributor-how-to-set-up-a-virtual-env.html'
            listitem
                link Develop in VSCode Dev Containers, url='https://flower.ai/docs/framework/contributor-how-to-develop-in-vscode-dev-containers.html'
            listitem
                link Write documentation, url='https://flower.ai/docs/framework/contributor-how-to-write-documentation.html'
            listitem
                link Release Flower, url='https://flower.ai/docs/framework/contributor-how-to-release-flower.html'
            listitem
                link Contribute translations, url='https://flower.ai/docs/framework/contributor-how-to-contribute-translations.html'
            listitem
                link How to Build Docker Flower Images Locally, url='https://flower.ai/docs/framework/contributor-how-to-build-docker-images.html'
        heading CONTRIBUTOR EXPLANATIONS
        list
            listitem
                link Public and private APIs, url='https://flower.ai/docs/framework/contributor-explanation-public-and-private-apis.html'
        heading CONTRIBUTOR REFERENCES
        list
            listitem
                link Good first contributions, url='https://flower.ai/docs/framework/contributor-ref-good-first-contributions.html'
            listitem
                link Secure Aggregation Protocols, url='https://flower.ai/docs/framework/contributor-ref-secure-aggregation-protocols.html'
        [525] LabelText, center=(369,1004), inner_text=Versions
            StaticText Versions
        list
            listitem
                ListMarker •
                link v1.8.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.9.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.10.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.11.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.11.1, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.12.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.13.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.13.1, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.14.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link main, url='javascript:void(0);'
        [551] link 🇬🇧, center=(276,1047), url='https://flower.ai/docs/framework/main/en/index.html'
        [552] link 🇫🇷, center=(350,1047), url='https://flower.ai/docs/framework/main/fr/index.html'
        [553] link 🇨🇳, center=(424,1047), url='https://flower.ai/docs/framework/main/zh_Hans/index.html'
        [554] link 🇰🇷, center=(480,1047), url='https://flower.ai/docs/framework/main/ko/index.html'
    [563] link View this page, center=(1323,42), title=View this page, url='https://flower.ai/docs/framework/_sources/index.rst.txt'
        image
    [567] button Toggle Light / Dark / Auto color theme, center=(1354,40)
        SvgRoot
            group Light mode
    main
        heading Flower Framework Documentation
        paragraph
            StaticText Welcome to Flower’s documentation.
            [582] link Flower, center=(917,171), url='https://flower.ai/'
            StaticText is a friendly federated learning framework.
        heading Join the Flower Community
        paragraph
            StaticText The Flower Community is growing quickly - we’re a friendly group of researchers, engineers, students, professionals, academics, and other enthusiasts.
        paragraph
            [588] link Join us on Slack, center=(638,355), url='https://flower.ai/join-slack'
        heading Flower Framework
        paragraph
            StaticText The user guide is targeted at researchers and developers who want to use Flower to bring existing machine learning workloads into a federated setting. One of Flower’s design goals was to make this simple. Read on to learn more.
        heading Tutorials
        paragraph
            StaticText A learning-oriented series of federated learning tutorials, the best place to start.
        heading TUTORIAL
        list
            listitem
                ListMarker •
                [603] link What is Federated Learning?, center=(702,669), url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            listitem
                ListMarker •
                [605] link Get started with Flower, center=(680,696), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html'
            listitem
                ListMarker •
                [607] link Use a federated learning strategy, center=(725,722), url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
            listitem
                ListMarker •
                [609] link Build a strategy from scratch, center=(704,749), url='https://flower.ai/docs/framework/tutorial-series-build-a-strategy-from-scratch-pytorch.html'
            listitem
                ListMarker •
                [611] link Customize the client, center=(667,775), url='https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html'
        paragraph
            StaticText QUICKSTART TUTORIALS:
            [614] link PyTorch, center=(815,810), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
            StaticText |
            [616] link TensorFlow, center=(914,810), url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
            StaticText |
            [618] link MLX, center=(998,810), url='https://flower.ai/docs/framework/tutorial-quickstart-mlx.html'
            StaticText |
            [620] link 🤗 Transformers, center=(1105,810), url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
            StaticText |
            [622] link JAX, center=(1208,810), url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
            StaticText |
            [624] link Pandas, center=(1271,810), url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
            StaticText |
            [626] link fastai, center=(580,836), url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
            StaticText |
            [628] link PyTorch Lightning, center=(699,836), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
            StaticText |
            [630] link scikit-learn, center=(842,836), url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
            StaticText |
            [632] link XGBoost, center=(945,836), url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
            StaticText |
            [634] link Android, center=(1033,836), url='https://flower.ai/docs/framework/tutorial-quickstart-android.html'
            StaticText |
            [636] link iOS, center=(1100,836), url='https://flower.ai/docs/framework/tutorial-quickstart-ios.html'
        paragraph
            StaticText We also made video tutorials for PyTorch:
        Iframe
            RootWebArea Flower Tutorial | Federated Learning Quickstart with Flower and PyTorch - YouTube, url='https://www.youtube.com/embed/jOmmuzMIQ4c'
                [a30] link Photo image of Flower, center=(587,935)
                [a38] link Flower Tutorial | Federated Learning Quickstart with Flower and PyTorch, center=(870,935), url='https://www.youtube.com/watch?v=jOmmuzMIQ4c'
                [a55] button Share, center=(1157,933), hasPopup='menu'
                    image
                [a91] button Play, center=(879,1100)
                    image
                generic, atomic
                [a317] link Watch on YouTube, center=(641,1268), url='https://www.youtube.com/watch?v=jOmmuzMIQ4c&embeds_referring_euri=https%3A%2F%2Fflower.ai%2F'
        paragraph
            StaticText And TensorFlow:
        Iframe
            RootWebArea Flower Tutorial | Federated Learning Quickstart with Flower and TensorFlow - YouTube, url='https://www.youtube.com/embed/FGTc2TQq7VM'
                [b30] link Photo image of Flower, center=(587,1377)
                [b38] link Flower Tutorial | Federated Learning Quickstart with Flower and TensorFlow, center=(870,1378), url='https://www.youtube.com/watch?v=FGTc2TQq7VM'
                [b55] button Share, center=(1157,1375), hasPopup='menu'
                    image
                [b91] button Play, center=(879,1542)
                    image
                generic, atomic
                [b317] link Watch on YouTube, center=(641,1711), url='https://www.youtube.com/watch?v=FGTc2TQq7VM&embeds_referring_euri=https%3A%2F%2Fflower.ai%2F'
        heading How-to guides
        paragraph
            StaticText Problem-oriented how-to guides show step-by-step how to achieve a specific goal.
        heading HOW-TO GUIDES
        list
            listitem
                ListMarker •
                link Install Flower, url='https://flower.ai/docs/framework/how-to-install-flower.html'
            listitem
                ListMarker •
                link Configure Clients, url='https://flower.ai/docs/framework/how-to-configure-clients.html'
            listitem
                ListMarker •
                link Design stateful ClientApps, url='https://flower.ai/docs/framework/how-to-design-stateful-clients.html'
            listitem
                ListMarker •
                link Use strategies, url='https://flower.ai/docs/framework/how-to-use-strategies.html'
            listitem
                ListMarker •
                link Implement strategies, url='https://flower.ai/docs/framework/how-to-implement-strategies.html'
            listitem
                ListMarker •
                link Aggregate evaluation results, url='https://flower.ai/docs/framework/how-to-aggregate-evaluation-results.html'
            listitem
                ListMarker •
                link Save and Load Model Checkpoints, url='https://flower.ai/docs/framework/how-to-save-and-load-model-checkpoints.html'
            listitem
                ListMarker •
                link Run simulations, url='https://flower.ai/docs/framework/how-to-run-simulations.html'
            listitem
                ListMarker •
                link Enable TLS connections, url='https://flower.ai/docs/framework/how-to-enable-tls-connections.html'
            listitem
                ListMarker •
                link Use Built-in Mods, url='https://flower.ai/docs/framework/how-to-use-built-in-mods.html'
            listitem
                ListMarker •
                link Use Differential Privacy, url='https://flower.ai/docs/framework/how-to-use-differential-privacy.html'
            listitem
                ListMarker •
                link Authenticate SuperNodes, url='https://flower.ai/docs/framework/how-to-authenticate-supernodes.html'
            listitem
                ListMarker •
                link Implement FedBN, url='https://flower.ai/docs/framework/how-to-implement-fedbn.html'
            listitem
                ListMarker •
                link Run Flower on Azure, url='https://flower.ai/docs/framework/how-to-run-flower-on-azure.html'
            listitem
                ListMarker •
                link Use CLI JSON output, url='https://flower.ai/docs/framework/how-to-use-cli-json-output.html'
            listitem
                ListMarker •
                link Run Flower using Docker, url='https://flower.ai/docs/framework/docker/index.html'
            listitem
                ListMarker •
                link Upgrade to Flower 1.0, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.0.html'
            listitem
                ListMarker •
                link Upgrade to Flower 1.13, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.13.html'
        heading Explanations
        paragraph
            StaticText Understanding-oriented concept guides explain and discuss key topics and underlying ideas behind Flower and collaborative AI.
        heading EXPLANATIONS
        list
            listitem
                ListMarker •
                link Federated evaluation, url='https://flower.ai/docs/framework/explanation-federated-evaluation.html'
            listitem
                ListMarker •
                link Differential Privacy, url='https://flower.ai/docs/framework/explanation-differential-privacy.html'
            listitem
                ListMarker •
                link Flower Architecture, url='https://flower.ai/docs/framework/explanation-flower-architecture.html'
        heading References
        paragraph
            StaticText Information-oriented API reference and other reference material.
        table
            rowgroup
                row
                    cell flwr
                        paragraph
                            link flwr, url='https://flower.ai/docs/framework/ref-api/flwr.html#module-flwr'
                                code
                    cell Flower main package.
                        paragraph
        list
            listitem
                ListMarker •
                link Flower CLI reference, url='https://flower.ai/docs/framework/ref-api-cli.html'
                list
                    listitem
                        ListMarker ◦
                        link Basic Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#basic-commands'
                    listitem
                        ListMarker ◦
                        link Advanced Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#advanced-commands'
                    listitem
                        ListMarker ◦
                        link Technical Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#technical-commands'
                    listitem
                        ListMarker ◦
                        link Deprecated Commands, url='https://flower.ai/docs/framework/ref-api-cli.html#deprecated-commands'
        heading REFERENCE DOCS
        list
            listitem
                ListMarker •
                link Example projects, url='https://flower.ai/docs/framework/ref-example-projects.html'
            listitem
                ListMarker •
                link Telemetry, url='https://flower.ai/docs/framework/ref-telemetry.html'
            listitem
                ListMarker •
                link Changelog, url='https://flower.ai/docs/framework/ref-changelog.html'
            listitem
                ListMarker •
                link FAQ, url='https://flower.ai/docs/framework/ref-faq.html'
        heading Contributor docs
        paragraph
            StaticText The Flower community welcomes contributions. The following docs are intended to help along the way.
        heading CONTRIBUTOR TUTORIALS
        list
            listitem
                ListMarker •
                link Contribute on GitHub, url='https://flower.ai/docs/framework/contributor-tutorial-contribute-on-github.html'
            listitem
                ListMarker •
                link Get started as a contributor, url='https://flower.ai/docs/framework/contributor-tutorial-get-started-as-a-contributor.html'
        heading CONTRIBUTOR HOW-TO GUIDES
        list
            listitem
                ListMarker •
                link Install development versions, url='https://flower.ai/docs/framework/contributor-how-to-install-development-versions.html'
            listitem
                ListMarker •
                link Set up a virtual env, url='https://flower.ai/docs/framework/contributor-how-to-set-up-a-virtual-env.html'
            listitem
                ListMarker •
                link Develop in VSCode Dev Containers, url='https://flower.ai/docs/framework/contributor-how-to-develop-in-vscode-dev-containers.html'
            listitem
                ListMarker •
                link Write documentation, url='https://flower.ai/docs/framework/contributor-how-to-write-documentation.html'
            listitem
                ListMarker •
                link Release Flower, url='https://flower.ai/docs/framework/contributor-how-to-release-flower.html'
            listitem
                ListMarker •
                link Contribute translations, url='https://flower.ai/docs/framework/contributor-how-to-contribute-translations.html'
            listitem
                ListMarker •
                link How to Build Docker Flower Images Locally, url='https://flower.ai/docs/framework/contributor-how-to-build-docker-images.html'
        heading CONTRIBUTOR EXPLANATIONS
        list
            listitem
                ListMarker •
                link Public and private APIs, url='https://flower.ai/docs/framework/contributor-explanation-public-and-private-apis.html'
        heading CONTRIBUTOR REFERENCES
        list
            listitem
                ListMarker •
                link Good first contributions, url='https://flower.ai/docs/framework/contributor-ref-good-first-contributions.html'
            listitem
                ListMarker •
                link Secure Aggregation Protocols, url='https://flower.ai/docs/framework/contributor-ref-secure-aggregation-protocols.html'
    contentinfo
        link Next What is Federated Learning?, url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            StaticText Next
            SvgRoot
                group Expand
        StaticText Copyright © 2025 Flower Labs GmbH
        StaticText Made with
        link Sphinx, url='https://www.sphinx-doc.org/'
        StaticText and
        link @pradyunsg, url='https://pradyunsg.me/'
        StaticText 's
        link Furo, url='https://github.com/pradyunsg/furo'
    complementary
        StaticText ON THIS PAGE
        list
            listitem
                list
                    listitem
                        [810] link Join the Flower Community, center=(1534,67), url='https://flower.ai/docs/framework/#join-the-flower-community'
                    listitem
                        [812] link Flower Framework, center=(1505,91), url='https://flower.ai/docs/framework/#flower-framework'
                        list
                            listitem
                                [815] link Tutorials, center=(1490,115), url='https://flower.ai/docs/framework/#tutorials'
                                list
                            listitem
                                [818] link How-to guides, center=(1510,139), url='https://flower.ai/docs/framework/#how-to-guides'
                            listitem
                                [820] link Explanations, center=(1505,163), url='https://flower.ai/docs/framework/#explanations'
                            listitem
                                [822] link References, center=(1499,187), url='https://flower.ai/docs/framework/#references'
                                list
                    listitem
                        [825] link Contributor docs, center=(1500,212), url='https://flower.ai/docs/framework/#contributor-docs'
                        list
RootWebArea Get started with Flower - Flower Framework, focused, url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html'
    LabelText
        StaticText Hide navigation sidebar
    LabelText
        StaticText Hide table of contents sidebar
Show more
    link Skip to content, url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#furo-main-content'
    complementary
        [89] link Logo main, center=(369,156), inner_text=main, url='https://flower.ai/docs/framework/index.html'
            image Logo, url='https://flower.ai/docs/framework/_static/flower-logo.png'
        search
            [94] textbox Search, center=(369,341), contenteditable=True
        heading TUTORIAL
        list
            listitem
                [104] link What is Federated Learning?, center=(369,437), url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            listitem
                [106] link Get started with Flower, center=(369,472), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#'
            listitem
                [108] link Use a federated learning strategy, center=(369,516), url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
            listitem
                [110] link Build a strategy from scratch, center=(369,560), url='https://flower.ai/docs/framework/tutorial-series-build-a-strategy-from-scratch-pytorch.html'
            listitem
                [112] link Customize the client, center=(369,595), url='https://flower.ai/docs/framework/tutorial-series-customize-the-client-pytorch.html'
        heading QUICKSTART TUTORIALS
        list
            listitem
                [117] link Quickstart PyTorch, center=(369,680), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch.html'
            listitem
                [119] link Quickstart TensorFlow, center=(369,715), url='https://flower.ai/docs/framework/tutorial-quickstart-tensorflow.html'
            listitem
                [121] link Quickstart MLX, center=(369,750), url='https://flower.ai/docs/framework/tutorial-quickstart-mlx.html'
            listitem
                [123] link Quickstart 🤗 Transformers, center=(369,785), url='https://flower.ai/docs/framework/tutorial-quickstart-huggingface.html'
            listitem
                [125] link Quickstart JAX, center=(369,820), url='https://flower.ai/docs/framework/tutorial-quickstart-jax.html'
            listitem
                [127] link Quickstart Pandas, center=(369,856), url='https://flower.ai/docs/framework/tutorial-quickstart-pandas.html'
            listitem
                [129] link Quickstart fastai, center=(369,891), url='https://flower.ai/docs/framework/tutorial-quickstart-fastai.html'
            listitem
                [131] link Quickstart PyTorch Lightning, center=(369,926), url='https://flower.ai/docs/framework/tutorial-quickstart-pytorch-lightning.html'
            listitem
                [133] link Quickstart scikit-learn, center=(369,961), url='https://flower.ai/docs/framework/tutorial-quickstart-scikitlearn.html'
            listitem
                link Quickstart XGBoost, url='https://flower.ai/docs/framework/tutorial-quickstart-xgboost.html'
            listitem
                link Quickstart Android, url='https://flower.ai/docs/framework/tutorial-quickstart-android.html'
            listitem
                link Quickstart iOS, url='https://flower.ai/docs/framework/tutorial-quickstart-ios.html'
        heading HOW-TO GUIDES
        list
            listitem
                link Install Flower, url='https://flower.ai/docs/framework/how-to-install-flower.html'
            listitem
                link Configure Clients, url='https://flower.ai/docs/framework/how-to-configure-clients.html'
            listitem
                link Design stateful ClientApps, url='https://flower.ai/docs/framework/how-to-design-stateful-clients.html'
            listitem
                link Use strategies, url='https://flower.ai/docs/framework/how-to-use-strategies.html'
            listitem
                link Implement strategies, url='https://flower.ai/docs/framework/how-to-implement-strategies.html'
            listitem
                link Aggregate evaluation results, url='https://flower.ai/docs/framework/how-to-aggregate-evaluation-results.html'
            listitem
                link Save and Load Model Checkpoints, url='https://flower.ai/docs/framework/how-to-save-and-load-model-checkpoints.html'
            listitem
                link Run simulations, url='https://flower.ai/docs/framework/how-to-run-simulations.html'
            listitem
                link Enable TLS connections, url='https://flower.ai/docs/framework/how-to-enable-tls-connections.html'
            listitem
                link Use Built-in Mods, url='https://flower.ai/docs/framework/how-to-use-built-in-mods.html'
            listitem
                link Use Differential Privacy, url='https://flower.ai/docs/framework/how-to-use-differential-privacy.html'
            listitem
                link Authenticate SuperNodes, url='https://flower.ai/docs/framework/how-to-authenticate-supernodes.html'
            listitem
                link Implement FedBN, url='https://flower.ai/docs/framework/how-to-implement-fedbn.html'
            listitem
                link Run Flower on Azure, url='https://flower.ai/docs/framework/how-to-run-flower-on-azure.html'
            listitem
                link Use CLI JSON output, url='https://flower.ai/docs/framework/how-to-use-cli-json-output.html'
            listitem
                link Run Flower using Docker, url='https://flower.ai/docs/framework/docker/index.html'
                LabelText
                    StaticText Toggle navigation of Run Flower using Docker
                    SvgRoot
                        group Expand
            listitem
                link Upgrade to Flower 1.0, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.0.html'
            listitem
                link Upgrade to Flower 1.13, url='https://flower.ai/docs/framework/how-to-upgrade-to-flower-1.13.html'
        heading EXPLANATIONS
        list
            listitem
                link Federated evaluation, url='https://flower.ai/docs/framework/explanation-federated-evaluation.html'
            listitem
                link Differential Privacy, url='https://flower.ai/docs/framework/explanation-differential-privacy.html'
            listitem
                link Flower Architecture, url='https://flower.ai/docs/framework/explanation-flower-architecture.html'
        heading API REFERENCE
        list
            listitem
                link flwr, url='https://flower.ai/docs/framework/ref-api/flwr.html'
                LabelText
                    StaticText Toggle navigation of flwr
                    SvgRoot
                        group Expand
        list
            listitem
                link Flower CLI reference, url='https://flower.ai/docs/framework/ref-api-cli.html'
        heading REFERENCE DOCS
        list
            listitem
                link Example projects, url='https://flower.ai/docs/framework/ref-example-projects.html'
            listitem
                link Telemetry, url='https://flower.ai/docs/framework/ref-telemetry.html'
            listitem
                link Changelog, url='https://flower.ai/docs/framework/ref-changelog.html'
            listitem
                link FAQ, url='https://flower.ai/docs/framework/ref-faq.html'
        heading CONTRIBUTOR TUTORIALS
        list
            listitem
                link Contribute on GitHub, url='https://flower.ai/docs/framework/contributor-tutorial-contribute-on-github.html'
            listitem
                link Get started as a contributor, url='https://flower.ai/docs/framework/contributor-tutorial-get-started-as-a-contributor.html'
        heading CONTRIBUTOR HOW-TO GUIDES
        list
            listitem
                link Install development versions, url='https://flower.ai/docs/framework/contributor-how-to-install-development-versions.html'
            listitem
                link Set up a virtual env, url='https://flower.ai/docs/framework/contributor-how-to-set-up-a-virtual-env.html'
            listitem
                link Develop in VSCode Dev Containers, url='https://flower.ai/docs/framework/contributor-how-to-develop-in-vscode-dev-containers.html'
            listitem
                link Write documentation, url='https://flower.ai/docs/framework/contributor-how-to-write-documentation.html'
            listitem
                link Release Flower, url='https://flower.ai/docs/framework/contributor-how-to-release-flower.html'
            listitem
                link Contribute translations, url='https://flower.ai/docs/framework/contributor-how-to-contribute-translations.html'
            listitem
                link How to Build Docker Flower Images Locally, url='https://flower.ai/docs/framework/contributor-how-to-build-docker-images.html'
        heading CONTRIBUTOR EXPLANATIONS
        list
            listitem
                link Public and private APIs, url='https://flower.ai/docs/framework/contributor-explanation-public-and-private-apis.html'
        heading CONTRIBUTOR REFERENCES
        list
            listitem
                link Good first contributions, url='https://flower.ai/docs/framework/contributor-ref-good-first-contributions.html'
            listitem
                link Secure Aggregation Protocols, url='https://flower.ai/docs/framework/contributor-ref-secure-aggregation-protocols.html'
        [527] LabelText, center=(369,1004), inner_text=Versions
            StaticText Versions
        list
            listitem
                ListMarker •
                link v1.8.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.9.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.10.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.11.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.11.1, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.12.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.13.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.13.1, url='javascript:void(0);'
            listitem
                ListMarker •
                link v1.14.0, url='javascript:void(0);'
            listitem
                ListMarker •
                link main, url='javascript:void(0);'
        [553] link 🇬🇧, center=(276,1047), url='https://flower.ai/docs/framework/main/en/tutorial-series-get-started-with-flower-pytorch.html'
        [554] link 🇫🇷, center=(350,1047), url='https://flower.ai/docs/framework/main/fr/tutorial-series-get-started-with-flower-pytorch.html'
        [555] link 🇨🇳, center=(424,1047), url='https://flower.ai/docs/framework/main/zh_Hans/tutorial-series-get-started-with-flower-pytorch.html'
        [556] link 🇰🇷, center=(480,1047), url='https://flower.ai/docs/framework/main/ko/tutorial-series-get-started-with-flower-pytorch.html'
    [565] link View this page, center=(1323,42), title=View this page, url='https://flower.ai/docs/framework/_sources/tutorial-series-get-started-with-flower-pytorch.ipynb.txt'
        image
    [569] button Toggle Light / Dark / Auto color theme, center=(1354,40)
        SvgRoot
            group Light mode
    main
        [581] link Open in Colab, center=(614,40), url='https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-get-started-with-flower-pytorch.ipynb'
            image Open in Colab, url='https://colab.research.google.com/assets/colab-badge.svg'
        heading Get started with Flower
        paragraph
            StaticText Welcome to the Flower federated learning tutorial!
        paragraph
            StaticText In this notebook, we’ll build a federated learning system using the Flower framework, Flower Datasets and PyTorch. In part 1, we use PyTorch for the model training pipeline and data loading. In part 2, we federate the PyTorch project using Flower.
        blockquote
            paragraph
                [591] link Star Flower on GitHub, center=(674,324), url='https://github.com/adap/flower'
                StaticText ⭐️ and join the Flower community on Flower Discuss and the Flower Slack to connect, ask questions, and get help: -
                [592] link Join Flower Discuss, center=(1148,350), url='https://discuss.flower.ai/'
                StaticText We’d love to hear from you in the
                code
                    StaticText Introduction
                StaticText topic! If anything is unclear, post in
                code
                    StaticText Flower
                    StaticText Help
                    StaticText -
                    StaticText Beginners
                StaticText . -
                [600] link Join Flower Slack, center=(755,403), url='https://flower.ai/join-slack'
                StaticText We’d love to hear from you in the
                code
                    StaticText #introductions
                StaticText channel! If anything is unclear, head over to the
                code
                    StaticText #questions
                StaticText channel.
        paragraph
            StaticText Let’s get started! 🌼
        heading Step 0: Preparation
        paragraph
            StaticText Before we begin with any actual code, let’s make sure that we have everything we need.
        heading Install dependencies
        paragraph
            StaticText Next, we install the necessary packages for PyTorch (
            code
                StaticText torch
            StaticText and
            code
                StaticText torchvision
            StaticText ), Flower Datasets (
            code
                StaticText flwr-datasets
            StaticText ) and Flower (
            code
                StaticText flwr
            StaticText ):
        StaticText [ ]:
        StaticText !pip install -q flwr[simulation] flwr-datasets[vision] torch torchvision matplotlib
        [634] button Copy to clipboard, center=(1344,768)
            image Copy to clipboard
        paragraph
            StaticText Now that we have all dependencies installed, we can import everything we need for this tutorial:
        StaticText [ ]:
        StaticText from collections import OrderedDict
from typing import List, Tuple

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from datasets.utils.logging import disable_progress_bar
from torch.utils.data import DataLoader

import flwr
from flwr.client import Client, ClientApp, NumPyClient
from flwr.common import Metrics, Context
from flwr.server import ServerApp, ServerConfig, ServerAppComponents
from flwr.server.strategy import FedAvg
from flwr.simulation import run_simulation
from flwr_datasets import FederatedDataset

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Training on {DEVICE}")
print(f"Flower {flwr.__version__} / PyTorch {torch.__version__}")
disable_progress_bar()
        [650] button Copy to clipboard, center=(1344,886)
            image Copy to clipboard
        paragraph
            StaticText It is possible to switch to a runtime that has GPU acceleration enabled (on Google Colab:
            code
                StaticText Runtime
                StaticText >
                StaticText Change
                StaticText runtime
                StaticText type
                StaticText >
                StaticText Hardware
                StaticText accelerator:
                StaticText GPU
                StaticText >
                StaticText Save
            StaticText ). Note, however, that Google Colab is not always able to offer GPU acceleration. If you see an error related to GPU availability in one of the following sections, consider switching back to CPU-based execution by setting
            code
                StaticText DEVICE
                StaticText =
                StaticText torch.device("cpu")
            StaticText . If the runtime has GPU acceleration enabled, you should see the output
            code
                StaticText Training
                StaticText on
                StaticText cuda
            StaticText , otherwise it’ll say
            code
                StaticText Training
                StaticText on
                StaticText cpu
            StaticText .
        heading Load the data
        paragraph
            StaticText Federated learning can be applied to many different types of tasks across different domains. In this tutorial, we introduce federated learning by training a simple convolutional neural network (CNN) on the popular CIFAR-10 dataset. CIFAR-10 can be used to train image classifiers that distinguish between images from ten different classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, and ‘truck’.
        paragraph
            StaticText We simulate having multiple datasets from multiple organizations (also called the “cross-silo” setting in federated learning) by splitting the original CIFAR-10 dataset into multiple partitions. Each partition will represent the data from a single organization. We’re doing this purely for experimentation purposes, in the real world there’s no need for data splitting because each organization already has their own data (the data is naturally partitioned).
        paragraph
            StaticText Each organization will act as a client in the federated learning system. Having ten organizations participate in a federation means having ten clients connected to the federated learning server.
        paragraph
            StaticText We use the Flower Datasets library (
            code
                StaticText flwr-datasets
            StaticText ) to partition CIFAR-10 into ten partitions using
            code
                StaticText FederatedDataset
            StaticText . We will create a small training and test set for each of the ten organizations and wrap each of these into a PyTorch
            code
                StaticText DataLoader
            StaticText :
        StaticText [ ]:
        StaticText NUM_CLIENTS = 10
BATCH_SIZE = 32


def load_datasets(partition_id: int):
    fds = FederatedDataset(dataset="cifar10", partitioners={"train": NUM_CLIENTS})
    partition = fds.load_partition(partition_id)
    # Divide data on each node: 80% train, 20% test
    partition_train_test = partition.train_test_split(test_size=0.2, seed=42)
    pytorch_transforms = transforms.Compose(
        [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
    )

    def apply_transforms(batch):
        # Instead of passing transforms to CIFAR10(..., transform=transform)
        # we will use this function to dataset.with_transform(apply_transforms)
        # The transforms object is exactly the same
        batch["img"] = [pytorch_transforms(img) for img in batch["img"]]
        return batch

    # Create train/val for each partition and wrap it into DataLoader
    partition_train_test = partition_train_test.with_transform(apply_transforms)
    trainloader = DataLoader(
        partition_train_test["train"], batch_size=BATCH_SIZE, shuffle=True
    )
    valloader = DataLoader(partition_train_test["test"], batch_size=BATCH_SIZE)
    testset = fds.load_split("test").with_transform(apply_transforms)
    testloader = DataLoader(testset, batch_size=BATCH_SIZE)
    return trainloader, valloader, testloader
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText We now have a function that can return a training set and validation set (
            code
                StaticText trainloader
            StaticText and
            code
                StaticText valloader
            StaticText ) representing one dataset from one of ten different organizations. Each
            code
                StaticText trainloader
            StaticText /
            code
                StaticText valloader
            StaticText pair contains 4000 training examples and 1000 validation examples. There’s also a single
            code
                StaticText testloader
            StaticText (we did not split the test set). Again, this is only necessary for building research or educational systems, actual federated learning systems have their data naturally distributed across multiple partitions.
        paragraph
            StaticText Let’s take a look at the first batch of images and labels in the first training set (i.e.,
            code
                StaticText trainloader
            StaticText from
            code
                StaticText partition_id=0
            StaticText ) before we move on:
        StaticText [ ]:
        StaticText trainloader, _, _ = load_datasets(partition_id=0)
batch = next(iter(trainloader))
images, labels = batch["img"], batch["label"]

# Reshape and convert images to a NumPy array
# matplotlib requires images with the shape (height, width, 3)
images = images.permute(0, 2, 3, 1).numpy()

# Denormalize
images = images / 2 + 0.5

# Create a figure and a grid of subplots
fig, axs = plt.subplots(4, 8, figsize=(12, 6))

# Loop over the images and plot them
for i, ax in enumerate(axs.flat):
    ax.imshow(images[i])
    ax.set_title(trainloader.dataset.features["label"].int2str([labels[i]])[0])
    ax.axis("off")

# Show the plot
fig.tight_layout()
plt.show()
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText The output above shows a random batch of images from the
            code
                StaticText trainloader
            StaticText from the first of ten partitions. It also prints the labels associated with each image (i.e., one of the ten possible labels we’ve seen above). If you run the cell again, you should see another batch of images.
        heading Step 1: Centralized Training with PyTorch
        paragraph
            StaticText Next, we’re going to use PyTorch to define a simple convolutional neural network. This introduction assumes basic familiarity with PyTorch, so it doesn’t cover the PyTorch-related aspects in full detail. If you want to dive deeper into PyTorch, we recommend
            link DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ, url='https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html'
            StaticText .
        heading Define the model
        paragraph
            StaticText We use the simple CNN described in the
            link PyTorch tutorial, url='https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#define-a-convolutional-neural-network'
            StaticText :
        StaticText [ ]:
        StaticText class Net(nn.Module):
    def __init__(self) -> None:
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText Let’s continue with the usual training and test functions:
        StaticText [ ]:
        StaticText def train(net, trainloader, epochs: int, verbose=False):
    """Train the network on the training set."""
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(net.parameters())
    net.train()
    for epoch in range(epochs):
        correct, total, epoch_loss = 0, 0, 0.0
        for batch in trainloader:
            images, labels = batch["img"].to(DEVICE), batch["label"].to(DEVICE)
            optimizer.zero_grad()
            outputs = net(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # Metrics
            epoch_loss += loss
            total += labels.size(0)
            correct += (torch.max(outputs.data, 1)[1] == labels).sum().item()
        epoch_loss /= len(trainloader.dataset)
        epoch_acc = correct / total
        if verbose:
            print(f"Epoch {epoch+1}: train loss {epoch_loss}, accuracy {epoch_acc}")


def test(net, testloader):
    """Evaluate the network on the entire test set."""
    criterion = torch.nn.CrossEntropyLoss()
    correct, total, loss = 0, 0, 0.0
    net.eval()
    with torch.no_grad():
        for batch in testloader:
            images, labels = batch["img"].to(DEVICE), batch["label"].to(DEVICE)
            outputs = net(images)
            loss += criterion(outputs, labels).item()
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    loss /= len(testloader.dataset)
    accuracy = correct / total
    return loss, accuracy
        button Copy to clipboard
            image Copy to clipboard
        heading Train the model
        paragraph
            StaticText We now have all the basic building blocks we need: a dataset, a model, a training function, and a test function. Let’s put them together to train the model on the dataset of one of our organizations (
            code
                StaticText partition_id=0
            StaticText ). This simulates the reality of most machine learning projects today: each organization has their own data and trains models only on this internal data:
        StaticText [ ]:
        StaticText trainloader, valloader, testloader = load_datasets(partition_id=0)
net = Net().to(DEVICE)

for epoch in range(5):
    train(net, trainloader, 1)
    loss, accuracy = test(net, valloader)
    print(f"Epoch {epoch+1}: validation loss {loss}, accuracy {accuracy}")

loss, accuracy = test(net, testloader)
print(f"Final test set performance:\n\tloss {loss}\n\taccuracy {accuracy}")
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText Training the simple CNN on our CIFAR-10 split for 5 epochs should result in a test set accuracy of about 41%, which is not good, but at the same time, it doesn’t really matter for the purposes of this tutorial. The intent was just to show a simple centralized training pipeline that sets the stage for what comes next - federated learning!
        heading Step 2: Federated Learning with Flower
        paragraph
            StaticText Step 1 demonstrated a simple centralized training pipeline. All data was in one place (i.e., a single
            code
                StaticText trainloader
            StaticText and a single
            code
                StaticText valloader
            StaticText ). Next, we’ll simulate a situation where we have multiple datasets in multiple organizations and where we train a model over these organizations using federated learning.
        heading Update model parameters
        paragraph
            StaticText In federated learning, the server sends global model parameters to the client, and the client updates the local model with parameters received from the server. It then trains the model on the local data (which changes the model parameters locally) and sends the updated/changed model parameters back to the server (or, alternatively, it sends just the gradients back to the server, not the full model parameters).
        paragraph
            StaticText We need two helper functions to update the local model with parameters received from the server and to get the updated model parameters from the local model:
            code
                StaticText set_parameters
            StaticText and
            code
                StaticText get_parameters
            StaticText . The following two functions do just that for the PyTorch model above.
        paragraph
            StaticText The details of how this works are not really important here (feel free to consult the PyTorch documentation if you want to learn more). In essence, we use
            code
                StaticText state_dict
            StaticText to access PyTorch model parameter tensors. The parameter tensors are then converted to/from a list of NumPy ndarray’s (which the Flower
            code
                StaticText NumPyClient
            StaticText knows how to serialize/deserialize):
        StaticText [ ]:
        StaticText def set_parameters(net, parameters: List[np.ndarray]):
    params_dict = zip(net.state_dict().keys(), parameters)
    state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
    net.load_state_dict(state_dict, strict=True)


def get_parameters(net) -> List[np.ndarray]:
    return [val.cpu().numpy() for _, val in net.state_dict().items()]
        button Copy to clipboard
            image Copy to clipboard
        heading Define the Flower ClientApp
        paragraph
            StaticText With that out of the way, let’s move on to the interesting part. Federated learning systems consist of a server and multiple clients. In Flower, we create a
            code
                StaticText ServerApp
            StaticText and a
            code
                StaticText ClientApp
            StaticText to run the server-side and client-side code, respectively.
        paragraph
            StaticText The first step toward creating a
            code
                StaticText ClientApp
            StaticText is to implement a subclasses of
            code
                StaticText flwr.client.Client
            StaticText or
            code
                StaticText flwr.client.NumPyClient
            StaticText . We use
            code
                StaticText NumPyClient
            StaticText in this tutorial because it is easier to implement and requires us to write less boilerplate. To implement
            code
                StaticText NumPyClient
            StaticText , we create a subclass that implements the three methods
            code
                StaticText get_parameters
            StaticText ,
            code
                StaticText fit
            StaticText , and
            code
                StaticText evaluate
            StaticText :
        list
            listitem
                ListMarker •
                paragraph
                    code
                        StaticText get_parameters
                    StaticText : Return the current local model parameters
            listitem
                ListMarker •
                paragraph
                    code
                        StaticText fit
                    StaticText : Receive model parameters from the server, train the model on the local data, and return the updated model parameters to the server
            listitem
                ListMarker •
                paragraph
                    code
                        StaticText evaluate
                    StaticText : Receive model parameters from the server, evaluate the model on the local data, and return the evaluation result to the server
        paragraph
            StaticText We mentioned that our clients will use the previously defined PyTorch components for model training and evaluation. Let’s see a simple Flower client implementation that brings everything together:
        StaticText [ ]:
        StaticText class FlowerClient(NumPyClient):
    def __init__(self, net, trainloader, valloader):
        self.net = net
        self.trainloader = trainloader
        self.valloader = valloader

    def get_parameters(self, config):
        return get_parameters(self.net)

    def fit(self, parameters, config):
        set_parameters(self.net, parameters)
        train(self.net, self.trainloader, epochs=1)
        return get_parameters(self.net), len(self.trainloader), {}

    def evaluate(self, parameters, config):
        set_parameters(self.net, parameters)
        loss, accuracy = test(self.net, self.valloader)
        return float(loss), len(self.valloader), {"accuracy": float(accuracy)}
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText Our class
            code
                StaticText FlowerClient
            StaticText defines how local training/evaluation will be performed and allows Flower to call the local training/evaluation through
            code
                StaticText fit
            StaticText and
            code
                StaticText evaluate
            StaticText . Each instance of
            code
                StaticText FlowerClient
            StaticText represents a
            emphasis
                StaticText single client
            StaticText in our federated learning system. Federated learning systems have multiple clients (otherwise, there’s not much to federate), so each client will be represented by its own instance of
            code
                StaticText FlowerClient
            StaticText . If we have, for example, three clients in our workload, then we’d have three instances of
            code
                StaticText FlowerClient
            StaticText (one on each of the machines we’d start the client on). Flower calls
            code
                StaticText FlowerClient.fit
            StaticText on the respective instance when the server selects a particular client for training (and
            code
                StaticText FlowerClient.evaluate
            StaticText for evaluation).
        paragraph
            StaticText In this notebook, we want to simulate a federated learning system with 10 clients
            emphasis
                StaticText on a single machine
            StaticText . This means that the server and all 10 clients will live on a single machine and share resources such as CPU, GPU, and memory. Having 10 clients would mean having 10 instances of
            code
                StaticText FlowerClient
            StaticText in memory. Doing this on a single machine can quickly exhaust the available memory resources, even if only a subset of these clients participates in a single round of federated learning.
        paragraph
            StaticText In addition to the regular capabilities where server and clients run on multiple machines, Flower, therefore, provides special simulation capabilities that create
            code
                StaticText FlowerClient
            StaticText instances only when they are actually necessary for training or evaluation. To enable the Flower framework to create clients when necessary, we need to implement a function that creates a
            code
                StaticText FlowerClient
            StaticText instance on demand. We typically call this function
            code
                StaticText client_fn
            StaticText . Flower calls
            code
                StaticText client_fn
            StaticText whenever it needs an instance of one particular client to call
            code
                StaticText fit
            StaticText or
            code
                StaticText evaluate
            StaticText (those instances are usually discarded after use, so they should not keep any local state). In federated learning experiments using Flower, clients are identified by a partition ID, or
            code
                StaticText partition-id
            StaticText . This
            code
                StaticText partition-id
            StaticText is used to load different local data partitions for different clients, as can be seen below. The value of
            code
                StaticText partition-id
            StaticText is retrieved from the
            code
                StaticText node_config
            StaticText dictionary in the
            code
                StaticText Context
            StaticText object, which holds the information that persists throughout each training round.
        paragraph
            StaticText With this, we have the class
            code
                StaticText FlowerClient
            StaticText which defines client-side training/evaluation and
            code
                StaticText client_fn
            StaticText which allows Flower to create
            code
                StaticText FlowerClient
            StaticText instances whenever it needs to call
            code
                StaticText fit
            StaticText or
            code
                StaticText evaluate
            StaticText on one particular client. Last, but definitely not least, we create an instance of
            code
                StaticText ClientApp
            StaticText and pass it the
            code
                StaticText client_fn
            StaticText .
            code
                StaticText ClientApp
            StaticText is the entrypoint that a running Flower client uses to call your code (as defined in, for example,
            code
                StaticText FlowerClient.fit
            StaticText ).
        StaticText [ ]:
        StaticText def client_fn(context: Context) -> Client:
    """Create a Flower client representing a single organization."""

    # Load model
    net = Net().to(DEVICE)

    # Load data (CIFAR-10)
    # Note: each client gets a different trainloader/valloader, so each client
    # will train and evaluate on their own unique data partition
    # Read the node_config to fetch data partition associated to this node
    partition_id = context.node_config["partition-id"]
    trainloader, valloader, _ = load_datasets(partition_id=partition_id)

    # Create a single Flower client representing a single organization
    # FlowerClient is a subclass of NumPyClient, so we need to call .to_client()
    # to convert it to a subclass of `flwr.client.Client`
    return FlowerClient(net, trainloader, valloader).to_client()


# Create the ClientApp
client = ClientApp(client_fn=client_fn)
        button Copy to clipboard
            image Copy to clipboard
        heading Define the Flower ServerApp
        paragraph
            StaticText On the server side, we need to configure a strategy which encapsulates the federated learning approach/algorithm, for example,
            emphasis
                StaticText Federated Averaging
            StaticText (FedAvg). Flower has a number of built-in strategies, but we can also use our own strategy implementations to customize nearly all aspects of the federated learning approach. For this example, we use the built-in
            code
                StaticText FedAvg
            StaticText implementation and customize it using a few basic parameters:
        StaticText [ ]:
        StaticText # Create FedAvg strategy
strategy = FedAvg(
    fraction_fit=1.0,  # Sample 100% of available clients for training
    fraction_evaluate=0.5,  # Sample 50% of available clients for evaluation
    min_fit_clients=10,  # Never sample less than 10 clients for training
    min_evaluate_clients=5,  # Never sample less than 5 clients for evaluation
    min_available_clients=10,  # Wait until all 10 clients are available
)
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText Similar to
            code
                StaticText ClientApp
            StaticText , we create a
            code
                StaticText ServerApp
            StaticText using a utility function
            code
                StaticText server_fn
            StaticText . In
            code
                StaticText server_fn
            StaticText , we pass an instance of
            code
                StaticText ServerConfig
            StaticText for defining the number of federated learning rounds (
            code
                StaticText num_rounds
            StaticText ) and we also pass the previously created
            code
                StaticText strategy
            StaticText . The
            code
                StaticText server_fn
            StaticText returns a
            code
                StaticText ServerAppComponents
            StaticText object containing the settings that define the
            code
                StaticText ServerApp
            StaticText behaviour.
            code
                StaticText ServerApp
            StaticText is the entrypoint that Flower uses to call all your server-side code (for example, the strategy).
        StaticText [ ]:
        StaticText def server_fn(context: Context) -> ServerAppComponents:
    """Construct components that set the ServerApp behaviour.

    You can use the settings in `context.run_config` to parameterize the
    construction of all elements (e.g the strategy or the number of rounds)
    wrapped in the returned ServerAppComponents object.
    """

    # Configure the server for 5 rounds of training
    config = ServerConfig(num_rounds=5)

    return ServerAppComponents(strategy=strategy, config=config)


# Create the ServerApp
server = ServerApp(server_fn=server_fn)
        button Copy to clipboard
            image Copy to clipboard
        heading Run the training
        paragraph
            StaticText In simulation, we often want to control the amount of resources each client can use. In the next cell, we specify a
            code
                StaticText backend_config
            StaticText dictionary with the
            code
                StaticText client_resources
            StaticText key (required) for defining the amount of CPU and GPU resources each client can access.
        StaticText [ ]:
        StaticText # Specify the resources each of your clients need
# By default, each client will be allocated 1x CPU and 0x GPUs
backend_config = {"client_resources": {"num_cpus": 1, "num_gpus": 0.0}}

# When running on GPU, assign an entire GPU for each client
if DEVICE == "cuda":
    backend_config = {"client_resources": {"num_cpus": 1, "num_gpus": 1.0}}
    # Refer to our Flower framework documentation for more details about Flower simulations
    # and how to set up the `backend_config`
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText The last step is the actual call to
            code
                StaticText run_simulation
            StaticText which - you guessed it - runs the simulation.
            code
                StaticText run_simulation
            StaticText accepts a number of arguments: -
            code
                StaticText server_app
            StaticText and
            code
                StaticText client_app
            StaticText : the previously created
            code
                StaticText ServerApp
            StaticText and
            code
                StaticText ClientApp
            StaticText objects, respectively -
            code
                StaticText num_supernodes
            StaticText : the number of
            code
                StaticText SuperNodes
            StaticText to simulate which equals the number of clients for Flower simulation -
            code
                StaticText backend_config
            StaticText : the resource allocation used in this simulation
        StaticText [ ]:
        StaticText # Run simulation
run_simulation(
    server_app=server,
    client_app=client,
    num_supernodes=NUM_CLIENTS,
    backend_config=backend_config,
)
        button Copy to clipboard
            image Copy to clipboard
        heading Behind the scenes
        paragraph
            StaticText So how does this work? How does Flower execute this simulation?
        paragraph
            StaticText When we call
            code
                StaticText run_simulation
            StaticText , we tell Flower that there are 10 clients (
            code
                StaticText num_supernodes=10
            StaticText , where 1
            code
                StaticText SuperNode
            StaticText launches 1
            code
                StaticText ClientApp
            StaticText ). Flower then goes ahead an asks the
            code
                StaticText ServerApp
            StaticText to issue an instructions to those nodes using the
            code
                StaticText FedAvg
            StaticText strategy.
            code
                StaticText FedAvg
            StaticText knows that it should select 100% of the available clients (
            code
                StaticText fraction_fit=1.0
            StaticText ), so it goes ahead and selects 10 random clients (i.e., 100% of 10).
        paragraph
            StaticText Flower then asks the selected 10 clients to train the model. Each of the 10
            code
                StaticText ClientApp
            StaticText instances receives a message, which causes it to call
            code
                StaticText client_fn
            StaticText to create an instance of
            code
                StaticText FlowerClient
            StaticText . It then calls
            code
                StaticText .fit()
            StaticText on each the
            code
                StaticText FlowerClient
            StaticText instances and returns the resulting model parameter updates to the
            code
                StaticText ServerApp
            StaticText . When the
            code
                StaticText ServerApp
            StaticText receives the model parameter updates from the clients, it hands those updates over to the strategy (
            emphasis
                StaticText FedAvg
            StaticText ) for aggregation. The strategy aggregates those updates and returns the new global model, which then gets used in the next round of federated learning.
        heading Where’s the accuracy?
        paragraph
            StaticText You may have noticed that all metrics except for
            code
                StaticText losses_distributed
            StaticText are empty. Where did the
            code
                StaticText {"accuracy":
                StaticText float(accuracy)}
            StaticText go?
        paragraph
            StaticText Flower can automatically aggregate losses returned by individual clients, but it cannot do the same for metrics in the generic metrics dictionary (the one with the
            code
                StaticText accuracy
            StaticText key). Metrics dictionaries can contain very different kinds of metrics and even key/value pairs that are not metrics at all, so the framework does not (and can not) know how to handle these automatically.
        paragraph
            StaticText As users, we need to tell the framework how to handle/aggregate these custom metrics, and we do so by passing metric aggregation functions to the strategy. The strategy will then call these functions whenever it receives fit or evaluate metrics from clients. The two possible functions are
            code
                StaticText fit_metrics_aggregation_fn
            StaticText and
            code
                StaticText evaluate_metrics_aggregation_fn
            StaticText .
        paragraph
            StaticText Let’s create a simple weighted averaging function to aggregate the
            code
                StaticText accuracy
            StaticText metric we return from
            code
                StaticText evaluate
            StaticText :
        StaticText [ ]:
        StaticText def weighted_average(metrics: List[Tuple[int, Metrics]]) -> Metrics:
    # Multiply accuracy of each client by number of examples used
    accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
    examples = [num_examples for num_examples, _ in metrics]

    # Aggregate and return custom metric (weighted average)
    return {"accuracy": sum(accuracies) / sum(examples)}
        button Copy to clipboard
            image Copy to clipboard
        StaticText [ ]:
        StaticText def server_fn(context: Context) -> ServerAppComponents:
    """Construct components that set the ServerApp behaviour.

    You can use settings in `context.run_config` to parameterize the
    construction of all elements (e.g the strategy or the number of rounds)
    wrapped in the returned ServerAppComponents object.
    """

    # Create FedAvg strategy
    strategy = FedAvg(
        fraction_fit=1.0,
        fraction_evaluate=0.5,
        min_fit_clients=10,
        min_evaluate_clients=5,
        min_available_clients=10,
        evaluate_metrics_aggregation_fn=weighted_average,  # <-- pass the metric aggregation function
    )

    # Configure the server for 5 rounds of training
    config = ServerConfig(num_rounds=5)

    return ServerAppComponents(strategy=strategy, config=config)


# Create a new server instance with the updated FedAvg strategy
server = ServerApp(server_fn=server_fn)

# Run simulation
run_simulation(
    server_app=server,
    client_app=client,
    num_supernodes=NUM_CLIENTS,
    backend_config=backend_config,
)
        button Copy to clipboard
            image Copy to clipboard
        paragraph
            StaticText We now have a full system that performs federated training and federated evaluation. It uses the
            code
                StaticText weighted_average
            StaticText function to aggregate custom evaluation metrics and calculates a single
            code
                StaticText accuracy
            StaticText metric across all clients on the server side.
        paragraph
            StaticText The other two categories of metrics (
            code
                StaticText losses_centralized
            StaticText and
            code
                StaticText metrics_centralized
            StaticText ) are still empty because they only apply when centralized evaluation is being used. Part two of the Flower tutorial will cover centralized evaluation.
        heading Final remarks
        paragraph
            StaticText Congratulations, you just trained a convolutional neural network, federated over 10 clients! With that, you understand the basics of federated learning with Flower. The same approach you’ve seen can be used with other machine learning frameworks (not just PyTorch) and tasks (not just CIFAR-10 images classification), for example NLP with Hugging Face Transformers or speech with SpeechBrain.
        paragraph
            StaticText In the next notebook, we’re going to cover some more advanced concepts. Want to customize your strategy? Initialize parameters on the server side? Or evaluate the aggregated model on the server side? We’ll cover all this and more in the next tutorial.
        heading Next steps
        paragraph
            StaticText Before you continue, make sure to join the Flower community on Flower Discuss (
            link Join Flower Discuss, url='https://discuss.flower.ai/'
            StaticText ) and on Slack (
            link Join Slack, url='https://flower.ai/join-slack/'
            StaticText ).
        paragraph
            StaticText There’s a dedicated
            code
                StaticText #questions
            StaticText channel if you need help, but we’d also love to hear who you are in
            code
                StaticText #introductions
            StaticText !
        paragraph
            StaticText The
            link Flower Federated Learning Tutorial - Part 2, url='https://flower.ai/docs/framework/tutorial-use-a-federated-learning-strategy-pytorch.html'
            StaticText goes into more depth about strategies and all the advanced things you can build with them.
        link Open in Colab, url='https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-get-started-with-flower-pytorch.ipynb'
            image Open in Colab, url='https://colab.research.google.com/assets/colab-badge.svg'
    contentinfo
        link Next Use a federated learning strategy, url='https://flower.ai/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html'
            StaticText Next
            SvgRoot
                group Expand
        link Previous What is Federated Learning?, url='https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html'
            SvgRoot
                group Expand
            StaticText Previous
        StaticText Copyright © 2025 Flower Labs GmbH
        StaticText Made with
        link Sphinx, url='https://www.sphinx-doc.org/'
        StaticText and
        link @pradyunsg, url='https://pradyunsg.me/'
        StaticText 's
        link Furo, url='https://github.com/pradyunsg/furo'
    complementary
        StaticText ON THIS PAGE
        list
            listitem
                list
                    listitem
                        [1242] link Step 0: Preparation, center=(1509,67), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Step-0:-Preparation'
                        list
                            listitem
                                [1245] link Install dependencies, center=(1531,91), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Install-dependencies'
                            listitem
                                [1247] link Load the data, center=(1508,115), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Load-the-data'
                    listitem
                        link Step 1: Centralized Training with PyTorch, url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Step-1:-Centralized-Training-with-PyTorch'
                        list
                            listitem
                                [1252] link Define the model, center=(1520,180), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Define-the-model'
                            listitem
                                [1254] link Train the model, center=(1514,205), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Train-the-model'
                    listitem
                        link Step 2: Federated Learning with Flower, url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Step-2:-Federated-Learning-with-Flower'
                        list
                            listitem
                                [1259] link Update model parameters, center=(1549,270), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Update-model-parameters'
                            listitem
                                [1261] link Define the Flower ClientApp, center=(1555,294), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Define-the-Flower-ClientApp'
                            listitem
                                [1263] link Define the Flower ServerApp, center=(1558,319), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Define-the-Flower-ServerApp'
                            listitem
                                [1265] link Run the training, center=(1516,343), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Run-the-training'
                            listitem
                                [1267] link Behind the scenes, center=(1523,367), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Behind-the-scenes'
                            listitem
                                [1269] link Where’s the accuracy?, center=(1538,391), url="https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Where's-the-accuracy?"
                    listitem
                        [1271] link Final remarks, center=(1489,415), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Final-remarks'
                    listitem
                        [1273] link Next steps, center=(1480,439), url='https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html#Next-steps'

Reasoning for action: By clicking on the 'Get started with Flower' link, I am directly accessing the introductory tutorial for implementing Flower, which aligns perfectly with the user story goals of quickly getting started with the framework. This link leads to the essential content that includes step-by-step guidance, making it easier for the researcher to implement Flower in their projects.

Action: click(104) # Click on the 'Get started with Flower' link to explore the introductory tutorial.

Change Description: The browser's URL changed to 'https://flower.ai/docs/framework/tutorial-series-get-started-with-flower-pytorch.html', and the page content now displays the 'Get started with Flower' tutorial, replacing the previous documentation page for the Flower Framework.

Screenshot before:Screenshot after:---